Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 25
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2024017
Published online 05 April 2024
  • Goswami A.D., Hole S.R. (2024) Analysis and comparison of the DC–DC converter with soft computing algorithm, EAI Endorsed Trans. Scalable Inf. Syst. 11, 2, 1–8. [Google Scholar]
  • Wang Y., Hu J., Liu N. (2023) Energy management in integrated energy system using energy-carbon integrated pricing method, IEEE Trans. Sustain. Energy 14, 4, 1992–2005. [CrossRef] [Google Scholar]
  • Hole S.R., Goswami A.D. (2022) Quantitative analysis of DC–DC converter models: A statistical perspective based on solar photovoltaic power storage, Energy Harvest. Syst. 9, 1, 113–121. [CrossRef] [Google Scholar]
  • Hole S.R., Goswami A.D. (2023) Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system, Energy Harvest. Syst. 11, 1, 20230029. [CrossRef] [Google Scholar]
  • Shui Y., Liu J., Gao H., Qiu G., Xu W., Gou J. (2018) Two-stage distributed robust cooperative dispatch for integrated electricity and natural gas energy systems considering uncertainty of wind power, Autom. Electric Power Syst. 42, 13, 43–50. [Google Scholar]
  • Zhai J., Wu X., Zhu S., Yang B., Liu H. (2020) Optimization of integrated energy system considering photovoltaic uncertainty and multi-energy network, IEEE Access 8, 141558–141568. [CrossRef] [Google Scholar]
  • Cao M., Shao C., Hu B., Xie K., Li W., Peng L., Zhang W. (2021) Reliability assessment of integrated energy systems considering emergency dispatch based on dynamic optimal energy flow, IEEE Trans. Sustain. Energy 13, 1, 290–301. [Google Scholar]
  • Schick C., Klempp N., Hufendiek K. (2022) Role and impact of prosumers in a -integrated energy system with high renewable shares, IEEE Trans. Power Syst. 37, 4, 3286–3298. [CrossRef] [Google Scholar]
  • Zhu S., Liu H., Xu J., Chen Z., Niu M. (2019) Study on the day-ahead co-operation strategy of regional integrated energy system including CCHP, J. Eng. 2019, 18, 5219–5223. [Google Scholar]
  • He J., Li Y., Li H., Tong H., Yuan Z., Yang X., Huang W. (2020) Application of game theory in integrated energy system systems: A review, IEEE Access 8, 93380–93397. [CrossRef] [Google Scholar]
  • Zhang Z., Zhang Y., Huang Q., Lee W.-J. (2018) Market-oriented optimal dispatching strategy for a wind farm with a multiple stage hybrid energy storage system, CSEE J. Power Energy Syst. 4, 4, 417–424. [CrossRef] [Google Scholar]
  • Zhang S., Gu W., Yao S., Lu S., Zhou S., Wu Z. (2021) Partitional decoupling method for fast calculation of energy flow in a large-scale heat and electricity integrated energy system, IEEE Trans. Sustain. Energy 12, 1, 501–513. [CrossRef] [Google Scholar]
  • Wei Z., Zhang S., Sun G., Zang H., Chen S., Chen S. (2017) Power-to-gas considered peak load shifting research for integrated electricity and natural-gas energy systems, Proc. CSEE 37, 16, 4601–4609. [Google Scholar]
  • Gang L.I., Xiaodong W., Guangyi D. (2017) Multi-energy complementary optimization research on local area integrated energy system, South. Energy Construct. 4, 2, 24–28. [Google Scholar]
  • Saberi K., Pashaei-Didani H., Nourollahi R. (2019) Optimal performance of CCHP based microgrid considering environmental issue in the presence of real time demand response, Sustain. Cities Soc. 45, 596–606. [CrossRef] [Google Scholar]
  • Diao H., Li P. (2020) Power-to-gas considered peak load shifting research for integrated electricity and natural-gas energy systems, in 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), IEEE, Nanjing, China, pp. 1–5. [Google Scholar]
  • Chen Z., Wang D., Jia H., Wang W.L., Guo B.Q., Qu B., Fan M.H. (2017) Research on optimal day-ahead economic dispatching strategy for microgrid considering P2G and multi-source energy storage system, Proc. CSEE 37, 11, 3067–3077. [Google Scholar]
  • Liu R., Li Z., Yang X., Sun G., Li L. (2019) Optimal dispatch of community integrated energy system considering user-side flexible load, Acta Energ. Sol. Sin. 40, 10, 2842–2850. [Google Scholar]
  • Li R., Sun F., Liu H., Ding X., Han Y., Yan J. (2020) Economic dispatch with hybrid time-scale of user-level integrated energy system considering differences in energy characteristics, Power Syst. Technol 44, 10, 3615–3624. [Google Scholar]
  • Chau T.K., Yu S.S., Fernando T., Iu H.H.C. (2017) Demand-side regulation provision from industrial loads integrated with solar PV panels and energy storage system for ancillary services, IEEE Trans. Ind. Inform. 14, 11, 5038–5049. [Google Scholar]
  • Jiang Z., Ai Q., Hao R. (2019) Integrated demand response mechanism for industrial energy system based on multi-energy interaction, IEEE Access 7, 66336–66346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.