Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 24 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/stet/2024018 | |
Published online | 05 April 2024 |
- Lu Q., Li C.L. (2021) Comprehensive utilization of Chinese medicine residues for industry and environment protection: Turning waste into treasure, J. Clean Prod. 279, 14. https://doi.org/10.1016/j.jclepro.2020.123856. [Google Scholar]
- Yandri Y., Ropingi H., Suhartati T., Suhartati T., Hendri J., Irawan B., Hadi S. (2022) The effect of zeolite/chitosan hybrid matrix for thermal-stabilization enhancement on the immobilization of Aspergillus fumigatus α-amylase, Emerg. Sci. J. 6, 3, 505–518. https://doi.org/10.28991/ESJ-2022-06-03-06. [CrossRef] [Google Scholar]
- Tao W.Y., Jin J.J., Zheng Y.P., Li S. (2021) Current advances of resource utilization of herbal extraction residues in China, Waste Biomass Valori. 12, 11, 5853–5868. https://doi.org/10.1007/s12649-021-01428-8. [CrossRef] [Google Scholar]
- Huang C., Li Z.X., Wu Y., Huang Z.Y., Hu Y., Gao J. (2021) Treatment and bioresources utilization of traditional Chinese medicinal herb residues: Recent technological advances and industrial prospect, J. Environ. Manage. 299, 17. https://doi.org/10.1016/j.jenvman.2021.113607. [Google Scholar]
- Vu H.P., Nguyen L.N., Vu M.T., Johir M.A.H., McLaughlan R., Nghiem L.D. (2020) A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks, Sci. Total Environ. 743, 140630. https://doi.org/10.1016/j.scitotenv.2020.140630. [CrossRef] [Google Scholar]
- Guan H., Ding W., Liu S., Zhao B., Zhang H., Zhong C., Chen B., Song A., Zhu D., Li H. (2023) Catalytic hydrothermal liquefaction of Chinese herb residue for the production of high-quality bio-oil, Int. J. Hydrogen Energy 48, 30, 11205–11213. https://doi.org/10.1016/j.ijhydene.2022.05.099. [CrossRef] [Google Scholar]
- Latifi F.E., Baba K., Ardouz G., El Bouanani L. (2023) Evaluation of liquefaction potential based on cone penetration test (CPT) and semi-empirical methods, Civ. Eng. J. 9, 2, 423–436. https://doi.org/10.28991/CEJ-2023-09-02-013. [CrossRef] [Google Scholar]
- Hanindya K.A., Makrup L., Paulus R. (2023) Deterministic seismic hazard analysis to determine liquefaction potential due to earthquake, Civ. Eng. J. 9, 5, 1203–1216. https://doi.org/10.28991/CEJ-2023-09-05-012. [CrossRef] [Google Scholar]
- Castello D., Haider M.S., Rosendahl L.A. (2019) Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks, Renew. Energy 141, 420–430. https://doi.org/10.1016/j.renene.2019.04.003. [CrossRef] [Google Scholar]
- Yu Z., Ma H., Liu X., Wang M., Wang J. (2022) Review in life cycle assessment of biomass conversion through pyrolysis-issues and recommendations, Green Chem. Eng. 3, 304–312. https://doi.org/10.1016/j.gce.2022.08.002. [CrossRef] [Google Scholar]
- Lachos-Perez D., Brown A.B., Mudhoo A., Martinez J., Timko M.T., Rostagno M.A., Forster-Cameiro T. (2017) Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: A critical review, Biofuel Res. J. 4, 2, 611–626. https://doi.org/10.18331/BRJ2017.4.2.6. [CrossRef] [Google Scholar]
- Arturi K.R., Kucheryavskiy S., Søgaard E.G. (2016) Performance of hydrothermal liquefaction (HTL) of biomass by multivariate data analysis, Fuel Process. Technol. 150, 94–103. https://doi.org/10.1016/j.fuproc.2016.05.007. [CrossRef] [Google Scholar]
- de Caprariis B., De Filippis P., Petrullo A., Scarsella M. (2017) Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production, Fuel 208, 618–625. https://doi.org/10.1016/j.fuel.2017.07.054. [CrossRef] [Google Scholar]
- Singh R., Balagurumurthy B., Prakash A., Bhaskar T. (2015) Catalytic hydrothermal liquefaction of water hyacinth, Bioresour. Technol. 178, 157–165. https://doi.org/10.1016/j.biortech.2014.08.119. [CrossRef] [Google Scholar]
- Kim S.J., Kim G.H., Um B.H. (2022) Use of an alkaline catalyst with ethanol-water as a co-solvent in the hydrothermal liquefaction of the Korean native kenaf: An analysis of the light oil and heavy oil characteristics, Energy 249, 13. https://doi.org/10.1016/j.energy.2022.123509. [Google Scholar]
- Cao L.C., Zhang C., Hao S.L., Luo G., Zhang S.C., Chen J.M. (2016) Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction, Bioresour. Technol. 220, 471–478. https://doi.org/10.1016/j.biortech.2016.08.110. [CrossRef] [Google Scholar]
- Jin B.B., Duan P.G., Zhang C.C., Xu Y.P., Zhang L., Wang F. (2014) Non-catalytic liquefaction of microalgae in sub- and supercritical acetone, Chem. Eng. J. 254, 384–392. https://doi.org/10.1016/j.cej.2014.05.137. [CrossRef] [Google Scholar]
- Yerrayya A., Vishnu A.K.S., Shreyas S., Chakravarthy S.R., Vinu R. (2020) Hydrothermal liquefaction of rice straw using methanol as Co-solvent, Energies 13, 10, 19. https://doi.org/10.3390/en13102618. [CrossRef] [Google Scholar]
- Harisankar S., Mohan R.V., Choudhary V., Vinu R. (2022) Effect of water quality on the yield and quality of the products from hydrothermal liquefaction and carbonization of rice straw, Bioresour. Technol. 351, 10. https://doi.org/10.1016/j.biortech.2022.127031. [CrossRef] [Google Scholar]
- Xu Y.F., Zheng X.J., Yu H.Q., Hu X.G. (2014) Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5, Bioresour. Technol. 156, 1–5. https://doi.org/10.1016/j.biortech.2014.01.010. [CrossRef] [Google Scholar]
- Wang A.J., Yu Z.Q., Wang Y., Zhang G.Q., Sun Z.C., Liu Y.Y., Shi C., Wang W. (2022) A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes, J. Catal. 410, 294–306. https://doi.org/10.1016/j.jcat.2022.04.024. [CrossRef] [Google Scholar]
- Feng L., Li X.H., Wang Z.Z., Liu B.Z. (2021) Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst, Bioresour. Technol. 323, 9. https://doi.org/10.1016/j.biortech.2020.124569. [CrossRef] [Google Scholar]
- Liu C.Z., Kong L.P., Wang Y.Y., Dai L.Y. (2018) Catalytic hydrothermal liquefaction of spirulina to bio-oil in the presence of formic acid over palladium-based catalysts, Algal Res. 33, 156–164. https://doi.org/10.1016/j.algal.2018.05.012. [CrossRef] [Google Scholar]
- Guan Y., Liu Y.H., Lv Q., Wang B. (2021) Fe decorated CeO2 microsphere catalyst with surface oxygen defect for NO reduction by CO, Mol. Catal. 516, 12. https://doi.org/10.1016/j.mcat.2021.111973. [Google Scholar]
- Yu D., Wang P., Li X.J., Zhao H.Y., Lv X.L. (2023) Study on the role of Fe species and acid sites in NH3-SCR over the Fe-based zeolites, Fuel 336, 14. https://doi.org/10.1016/j.fuel.2022.126759. [Google Scholar]
- Dhal J.P., Dash T., Hota G. (2020) Iron oxide impregnated mesoporous MCM-41: synthesis, characterization and adsorption studies, J. Porous Mater. 27, 1, 205–216. https://doi.org/10.1007/s10934-019-00803-0. [CrossRef] [Google Scholar]
- Taghvaei H., Moaddeli A., Khalafi-Nezhad A., Iulianelli A. (2021) Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: Effect of Si/Al ratio and Ni loading, Fuel 293, 10. https://doi.org/10.1016/j.fuel.2021.120493. [CrossRef] [Google Scholar]
- Gao Y.T., Peng L.L., Long J.P., Wu Y., Dai Y., Yang Y. (2021) Hydrogen pre-reduction determined Co-silica interaction and performance of cobalt catalysts for propane dehydrogenation, Microporous Mesoporous Mater. 323, 10. https://doi.org/10.1016/j.micromeso.2021.111187. [Google Scholar]
- Jin T., Wang H.T., Peng J.B., Wu Y.S., Huang Z., Tian X., Ding M.Y. (2022) Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production, Fuel Process. Technol. 230, 9. https://doi.org/10.1016/j.fuproc.2022.107201. [Google Scholar]
- Danks A.E., Hall S.R., Schnepp Z. (2016) The evolution of “sol-gel” chemistry as a technique for materials synthesis, Mater. Horizons 3, 2, 91–112. [CrossRef] [Google Scholar]
- Khampuang K., Boreriboon N., Prasassarakich P. (2015) Alkali catalyzed liquefaction of corncob in supercritical ethanol–water, Biomass Bioenergy 83, 460–466. https://doi.org/10.1016/j.biombioe.2015.10.022. [CrossRef] [Google Scholar]
- Wang C., Wu J., Shi L., Hou L., Wang X., Wang X. (2022) The catalytic hydrothermal liquefaction of lignin to produce aromatics over nickel metal hydrotalcite catalysts, J. Supercrit. Fluids 190, 105737. https://doi.org/10.1016/j.supflu.2022.105737. [CrossRef] [Google Scholar]
- Ma M., Li M., Xiao R. (2023) Hydrothermal treatment of traditional Chinese medicine residues: Detailed characterization of hydrochar and liquid phase products, Biomass Convers. Biorefin. 1–13. https://doi.org/10.1007/s13399-023-04409-0. [Google Scholar]
- Patel B., Arcelus-Arrillaga P., Izadpanah A., Hellgardt K. (2017) Catalytic hydrotreatment of algal biocrude from fast hydrothermal liquefaction, Renew. Energy 101, 1094–1101. https://doi.org/10.1016/j.renene.2016.09.056. [CrossRef] [Google Scholar]
- Xu D., Lin G., Guo S., Wang S., Guo Y., Jing Z. (2018) Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review, Renewable Sustain. Energy Rev. 97, 103–118. https://doi.org/10.1016/j.rser.2018.08.042. [CrossRef] [Google Scholar]
- Gao J.J., Zeng J.T., Zhu S.T., Ma H., Yao R.J., Zhao Y.Z., He Z.M. (2023) In-situ catalytic bio-oil production from hydrothermal liquefaction of Cu-impregnated water hyacinth: Screening of reaction parameters, J. Energy Inst. 109, 12. https://doi.org/10.1016/j.joei.2023.101308. [Google Scholar]
- Ding Y., Zhao J., Liu C.X. (2019) Catalytic hydrothermal liquefaction of rice straw for production of monomers phenol over metal supported mesoporous catalyst, Bioresour. Technol. 294, 8. https://doi.org/10.1016/j.biortech.2019.122097. [CrossRef] [Google Scholar]
- Kumar A., Biswas B., Kaur R., Krishna B.B., Thallada B. (2021) Oxidative valorisation of lignin into valuable phenolics: Effect of acidic and basic catalysts and reaction parameters, Bioresour. Technol. 338, 8. https://doi.org/10.1016/j.biortech.2021.125513. [CrossRef] [Google Scholar]
- Meng Y., Du H., Lu S., Liu Y., Zhang J., Li H. (2023) In situ synergistic catalysis hydrothermal liquefaction of spirulina by CuO–CeO2 and Ni–Co to improve bio-oil production, ACS Omega 8, 9, 8219–8226. https://doi.org/10.1021/acsomega.2c05619. [CrossRef] [PubMed] [Google Scholar]
- Biswas B., Bisht Y., Kumar J., Yenumala S.R., Bhaskar T. (2022) Effects of temperature and solvent on hydrothermal liquefaction of the corncob for production of phenolic monomers, Biomass Convers. Biorefin. 12, 1, 91–101. https://doi.org/10.1007/s13399-020-01012-5. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.