Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
The Role of Negative Emissions Technologies in 2050 Decarbonation Pathways
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.2516/stet/2024021 | |
Published online | 19 April 2024 |
- Bouramdane A.-A. (2023) Assessment of CMIP6 multi-model projections worldwide: which regions are getting warmer and are going through a drought in Africa and Morocco? What changes from CMIP5 to CMIP6?, Sustainability 15, 690. https://doi.org/10.3390/su15010690. [Google Scholar]
- Bouramdane A.-A. (2023) Determining vulnerable areas to warming and drought in Africa and Morocco Based on CMIP6 Projections: towards the implementation of mitigation and adaptation measures, in: EGU General Assembly 2023, Vienna, Austria, 24–28 April, EGU23-2456. https://doi.org/10.5194/egusphere-egu23-2456. [Google Scholar]
- Bouramdane A.-A. (2021) Scenarios of large-scale solar integration with wind in Morocco: impact of storage, cost, spatio-temporal complementarity and climate change, Theses, Institut Polytechnique de Paris. https://tel.archives-ouvertes.fr/tel-03518906. [Google Scholar]
- Jolánkai M., Birkás M., Tarnawa Á., Kassai K.M. (2019) Agriculture and climate change, in: International climate protection, M. Palocz-Andresen, D. Szalay, A. Gosztom, L. Sípos, T. Taligás (eds), International climate protection, Springer, Cham, pp. 65–71. [CrossRef] [Google Scholar]
- Bouramdane A.-A. (2023) Optimal water management strategies: paving the way for sustainability in smart citie, smart, Cities 6, 5. https://doi.org/10.3390/smartcities6050128. [Google Scholar]
- CAT. Climate Action Tracker. Available at https://climateactiontracker.org. [Google Scholar]
- Bouramdane A.-A. (2023) Climate resilience: insights from global negotiations and Morocco’s path to sustainability, Lambert Academic Publishing (LAP), London, UK. [Google Scholar]
- Energy Transitions Commission, Reaching net-zero carbon emissions from harder-to-abate sectors by mid-century, The Energy Transitions Commission, Available at https://www.ieta.org/resources/COP24/Misc%20Media%20Files/Dec7/SE16%20(3).pdf (accessed on June 21st 2021). [Google Scholar]
- Kaya Y., Yokobori K. (1999) Environment, energy and economy: Strategies for sustainability, United Nations University Press, Tokyo, New York, Paris. [Google Scholar]
- Dindi A., Coddington K., Garofalo J.F., Wu W., Zhai H. (2022) Policy-driven potential for deploying carbon capture and sequestration in a fossil-rich power sector, Environ. Sci. Technol. 56, 14, 9872–9881. https://doi.org/10.1021/acs.est.1c08837 [Google Scholar]
- REN21 (2020) Renewables 2021 global status report, REN21, Paris, France. Available at https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed on 21 June, 2021). [Google Scholar]
- Bouramdane A.-A. (2023) Minéraux de la transition énergétique: criticité géologique, géostratégique et environnementale, Énergie/Mines & Carriéres. https://doi.org/10.5281/zenodo.7594617. [Google Scholar]
- Our World in Data, Research and data to make progress against the world’s largest problems. Available at https://ourworldindata.org. [Google Scholar]
- IEA (2019) Energy policies beyond IEA countries: Morocco 2019, IEA. Available at https://www.iea.org/reports/energy-policies-beyond-iea-countries-morocco-2019 (accessed on November 20, 2023). [Google Scholar]
- Caron J., Fally T. (2018) Per capita income, consumption patterns, and CO2 emissions, J. Assoc. Environ. Resour. Econ. 9, 235–271. [Google Scholar]
- Sahoo G., Wani A.M., Swamy S.L., Rout S., Gupta S. (2022) Indoor pollution and human health, AIP Conf. Proc. 2385, 030001. [CrossRef] [Google Scholar]
- Cuaresma J.C., Danylo O., Fritz S., Mccallum I., Obersteiner M., See L.M., Walsh B.J. (2017) Economic development and forest cover: evidence from satellite data, Sci. Rep. 7, 40678. https://doi.org/10.1038/srep40678. [CrossRef] [Google Scholar]
- Bouramdane A.-A. (2023) L’oasis d’hydrogène vert pour une agriculture marocaine durable, La Jaune et la Rouge No. 790, Le Magazine des Alumni de Polytechnique, Environnement et Société, Paris, France. Available at https://www.lajauneetlarouge.com/loasis-dhydrogene-vert-pour-une-agriculture-marocaine-durable/. [Google Scholar]
- IRENA (2023) World Energy Transitions Outlook 2023–1.5 C Pathway, IRENA, Available at https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_energy_transitions_outlook_2023.pdf?rev=db3ca01ecb4a4ef8accb31d017934e97 (accessed on January 30, 2024). [Google Scholar]
- IRENA (2023) North Africa: policies and finance for renewable energy deployment, IRENA. Available at https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Dec/IRENA_North_Africa_policies_finance_RE_2023.pdf?rev=e3c4c1eb15124941a64faa70e6deb24a (accessed on January 30, 2024). [Google Scholar]
- IRENA (2023) Long-term low greenhouse gas emission development strategies (LT-LEDS), United Nations Climate Change, Available online https://unfccc.int/documents/403585 (accessed on January 31, 2024). [Google Scholar]
- IPCC (2021) Summary for policymakers, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)], Climate Change 2021: The physical science basis, IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA. [Google Scholar]
- IPCC (2021) Summary for policymakers, in: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)], Climate change 2022: Impacts, adaptation and vulnerability. IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA. [Google Scholar]
- IPCC (2022) Summary for policymakers, in: Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)], Climate change 2022: mitigation of climate change, IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA. [Google Scholar]
- Bouramdane A.-A. (2023) Cyberattacks in smart grids: challenges and solving the multi-criteria decision-making for cybersecurity options, including ones that incorporate artificial intelligence, using an analytical hierarchy process, J. Cybersecur. Privacy 3, 4. https://doi.org/10.3390/jcp3040031. [Google Scholar]
- Bouramdane A.-A. (2023) Climate risks and energy transition in morocco: vulnerability to climate losses and damages and uncertainty in the renewable electricity mix under different penetration, Lambert Academic Publishing (LAP), London UK. [Google Scholar]
- IEA (2023) Climate resilience for energy transition in Morocco, IEA, Available at https://www.iea.org/reports/climate-resilience-for-energy-transition-in-morocco (accessed on January 31, 2024). [Google Scholar]
- Hu A., Levis S., Meehl G.A., Han W., Washington W.M., Oleson K.W., van Ruijven B., He M., Strand W.G. (2016) Impact of solar panels on global climate, Nat. Clim. Change 6, 290–294. https://api.semanticscholar.org/CorpusID:83597811. [CrossRef] [Google Scholar]
- Hou X., Wild M., Folini D., Kazadzis S., Wohland J. (2016) Climate change impacts on solar power generation and its spatial variability in europe based on CMIP6, Earth Syst. Dyn. 12, 4, 1099–1113. https://api.semanticscholar.org/CorpusID:236922701. [Google Scholar]
- Jerez S., Tobin I., Vautard R., Montávez J.P., López-Romero J.M., Thais F., Bartók B., Christensen O.B., Colette A., Déqué M., Nikulin G., Kotlarski S., van Meijgaard E., Teichmann C., Wild M. (2015) The impact of climate change on photovoltaic power generation in europe, Nat. Commun. 6, 10014. https://api.semanticscholar.org/CorpusID:14310649. [CrossRef] [Google Scholar]
- Pryor S.C., Barthelmie R.J., Bukovsky M.S., Leung L.R., Sakaguchi K. (2020) Climate change impacts on wind power generation, Nat. Rev. Earth Environ. 1, 627–643. https://api.semanticscholar.org/CorpusID:224783200. [CrossRef] [Google Scholar]
- Liu L., He G., Wu M., Liu G., Zhang H., Chen Y., Shen J., Li S. (2023) Climate change impacts on planned supply-demand match in global wind and solar energy systems, Nat. Energy 8, 870–880. https://api.semanticscholar.org/CorpusID:260145960. [CrossRef] [Google Scholar]
- Tarroja B., Aghakouchak A., Samuelsen S. (2016) Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation, Energy 111, 295–305. https://api.semanticscholar.org/CorpusID:44218882. [CrossRef] [Google Scholar]
- Oyerinde G.T., Wisser D., Hountondji F.C.C., Odofin A.J., Lawin A.E., Afouda A., Diekkrüger B. (2016) Quantifying uncertainties in modeling climate change impacts on hydropower production, Climate 4, 34. https://api.semanticscholar.org/CorpusID:16787176. [CrossRef] [Google Scholar]
- Romitti Y., Wing I.S. (2022) Heterogeneous climate change impacts on electricity demand in world cities circa mid-century, Sci. Rep. 12, 4280. https://api.semanticscholar.org/CorpusID:247407508. [CrossRef] [Google Scholar]
- van Ruijven B.J., Cian E.D., Wing I.S. (2019) Amplification of future energy demand growth due to climate change, Nat. Commun. 10, 2762. https://api.semanticscholar.org/CorpusID:195357128. [CrossRef] [Google Scholar]
- Schumann Z.D., Chini C.M. (2023) Component assessment of the electric transmission grid to hurricanes, Earth’s, Future 11, e2023EF003525. https://doi.org/10.1029/2023EF003525. [Google Scholar]
- Ferreira N.C.R., Tavares P., Medeiros G.S., Ferreira L.N., Borges P., Chou S.C., Rodrigues M.L. (2023) Projections of severe weather and the impacts on transmission line towers in Santa Catarina, Brazil, under future scenarios of global climate change, Derbyana 44, e808. https://doi.org/10.14295/derb.v44.808. [Google Scholar]
- Maroc R.D. (2021) Feuille de route hydrogène vert vecteur de transition énergétique et de croissance durable. Available at https://www.lebrief.ma/wp-content/uploads/2022/06/Feuille-de-route-de-hydroge (accessed on November 20, 2023). [Google Scholar]
- IEA (2023) National hydrogen strategy, IEA, Available at https://www.iea.org/policies/16971-national-hydrogen-strategy (accessed on November 20, 2023). [Google Scholar]
- Bouramdane A.-A. (2023) Crafting an optimal portfolio for sustainable hydrogen production choices in Morocco, Fuel 358, 130292. https://doi.org/10.1016/j.fuel.2023.130292. [Google Scholar]
- Masson-Delmotte V., Zhai P., Pörtner H., Roberts D., Skea J., Shukla P., Pirani A., Moufouma-Okia W., Péan C., Pidcock R., Connors S., Matthews J.B., Yang C., Zhou X., Steg L. (2018) Global warming of 1.5 C: Summary for policy makers, World Meteorological Organization Technical Document, Geneva, Switzerland. [Google Scholar]
- Parra P.A.Y., Ganti G., Brecha R., Hare B., Schaeffer M., Fuentes U. (2019) Global and regional coal phase-out requirements of the Paris agreement: insights from the IPCC Special Report on 1.5 °C. Available at https://ca1-clm.edcdn.com/assets/report_coal_phase_out_2019.pdf?v=1679477882. [Google Scholar]
- World Economic Forum (2019) What companies can learn from first movers, carbon dioxide removal: best-practice guidelines, WEF, Available at https://www3.weforum.org/docs/WEF_Carbon_Dioxide_Removal_Best_Practice_Guidelines_2023.pdf (accessed on January 31, 2024). [Google Scholar]
- Nakamura A., Yanagi K., Komatsu E. (2019) Toward a regional approach to climate change mitigation policies: the roles of and barriers to policy and legal framework to expand potential opportunities for carbon capture, utilisation and storage (CCUS) in the Asian pacific region, Political Economy – Development: Environment eJournal. [Google Scholar]
- don Cheon Y. (2022) Review of global carbon neutral strategies and technologies, J. Korean Soc. Miner. Energy Resour. 59, 99–112. [CrossRef] [Google Scholar]
- Sun H., Edziah B.K., Kporsu A.K., Sarkodie S.A., Taghizadeh-Hesary F. (2021) Energy efficiency: the role of technological innovation and knowledge spillover, Technol. Forecast. Soc. Change 167, 120659. https://doi.org/10.1016/j.techfore.2021.120659. [CrossRef] [Google Scholar]
- Singh H.L., Khaturia S., Chahar M. (2021) Energy efficiency, in Introduction to AI techniques for renewable energy systems, S.L. Tripathi, M.K. Dubey, V. Rishiwal, S. Padmanban (eds), CRC Press, New York, pp. 185–200. [CrossRef] [Google Scholar]
- Lackner M. (2012) Energy efficiency: Comparison of different systems and technologies, in: Handbook of climate change mitigation, W.Y. Chen, J. Seiner, T. Suzuki, M. Lackner (eds), Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_24. [Google Scholar]
- Lee Y.-S., Lee H.-C., Gim J.-H., Seo I.-K., Lee G.J. (2020) Technical measures to mitigate load fluctuation for large-scale customers to improve power system energy efficiency, Energies 13, 4812. https://doi.org/10.3390/en13184812. [CrossRef] [Google Scholar]
- Wu Y., Fu L., Zhang S., Tang D. (2019) Study on a novel co-operated heat and power system for improving energy efficiency and flexibility of cogeneration plants, Applied Thermal Engineering 163, 114429. [CrossRef] [Google Scholar]
- Moura P.S., López G.L., Moreno J.I., de Almeida A.T. (2013) The role of smart grids to foster energy efficiency, Energy Effic. 6, 621–639. https://doi.org/10.1007/s12053-013-9205-y. [CrossRef] [Google Scholar]
- Kaya D.A., Çanka Kılıç F., Öztürk H.H. (2021) Energy management and energy efficiency in industry: practical examples, Springer International Publishing, Cham, Switzerland. [Google Scholar]
- González L.P., Fensel A., Berbís J.M.G., Popa A., de Amescua Seco A. (2021) A survey on energy efficiency in smart homes and smart grids, Energies 14, 7273. https://doi.org/10.3390/en14217273 [CrossRef] [Google Scholar]
- Saponara S., Lee C.H.T., Wang N.X., Kirtley J.L. (2020) Electric drives and power chargers: Recent solutions to improve performance and energy efficiency for hybrid and fully electric vehicles, IEEE Veh. Technol. Mag. 15, 73–83. https://doi.org/10.1109/MVT.2019.2959343 [CrossRef] [Google Scholar]
- Green J.F. (2021) Does carbon pricing reduce emissions? A review of ex-post analyses, Environ. Res. Lett. 16, 043004. https://doi.org/10.1088/1748-9326/abdae9. [CrossRef] [Google Scholar]
- Eslamnoor N., Vural S.M. (2021) User behavior and energy efficiency in north cyprus university dormitories: a case study, J. Hous. Built Environ. 37, 1159–1178. https://doi.org/10.1007/s10901-021-09878-1. [Google Scholar]
- Santarius T. (2015) Energy efficiency, human behavior, and economic growth: challenges to cutting energy demand to sustainable levels, AIP Conf. Proc. 1652, 70–81. https://doi.org/10.1063/1.4916170. [CrossRef] [Google Scholar]
- IPCC (2022) Summary for policymakers, in: Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)], Climate change 2022: Mitigation of climate change, IPCC, Cambridge University Press, Cambridge, UK and New York, NY, USA. Available at https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf (accessed on October 11, 2022). [Google Scholar]
- Plonsky O., Apel R., Ert E., Tennenholtz M., Bourgin D.D., Peterson J.C., Reichman D., Griffiths T.L., Russell S.J., Carter E.C., Cavanagh J.F., Erev I. (2019) Predicting human decisions with behavioral theories and machine learning. Available at https://doi.org/10.48550/arXiv.1904.06866. [Google Scholar]
- Steffen W., Richardson K., Rockström J., Cornell S.E., Fetzer I., Bennett E.M., Biggs R., Carpenter S.R., de Vries W., de Wit C.A., Folke C., Gerten D., Heinke J., Mace G.M., Persson L., Ramanathan V., Reyers B., Sörlin S. (2015) Planetary boundaries: guiding human development on a changing planet, Science 347, 1259855. https://doi.org/10.1126/science.125985. [CrossRef] [PubMed] [Google Scholar]
- O’Neill D.W., Fanning A.L., Lamb W.F., Steinberger J.K. (2018) A good life for all within planetary boundaries, Nat. Sustain. 1, 88–95. https://doi.org/10.1038/s41893-018-0021-4. [CrossRef] [Google Scholar]
- Williges K., Meyer L.H., Steininger K.W., Kirchengast G. (2022) Fairness critically conditions the carbon budget allocation across countries, Glob. Environ. Change 74, 1024481. https://doi.org/10.1016/j.gloenvcha.2022.102481. [CrossRef] [Google Scholar]
- Charentenature (2012) Scénario négawatt 2011. [Google Scholar]
- Revel D. (2014) Scénario négawatt : rapport technique. [Google Scholar]
- Cassoret B. (2021) Energy efficiency and sobriety. [Google Scholar]
- Guillard V. (2021) Towards a society of sobriety: conditions for a change in consumer behavior, Field Actions Sci. Rep. Special Issue 23, 36–39. [Google Scholar]
- IEA (2021) The role of critical minerals in clean energy transitions, IEA, Paris. [Google Scholar]
- IEA (2022) Renewable energy market update: outlook for 2022 and 2023. https://doi.org/10.1787/faf30e5a-en. [Google Scholar]
- IRENA (2021) Renewable power generation costs in 2021: report, IRENA, Abu Dhabi, UAE. Available at https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021_Summary.pdf?la=enhash=C0C810E72185BB4132AC5EA07FA26C669D3AFBFC (accessed on October 11th, 2022). [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCC). Morocco’s nationally determined contribution under the UNFCCC, https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Morocco%20First/Morocco%20First%20NDC-English.pdf (accessed on June 21, 2021). [Google Scholar]
- Chargé de l’Environnement (2020) Plan climat national à horizon 2030. [Google Scholar]
- Climate Analytics (2022) 1.5 °C National pathways explorer, Available at https://1p5ndc-pathways.climateanalytics.org/. [Google Scholar]
- Sanguesa J.A., Torres-Sanz V., Garrido P., Martinez F.J., Marquez-Barja J.M. (2021) A review on electric vehicles: technologies and challenges, Smart Cities 4, 1, 372–404. https://doi.org/10.3390/smartcities4010022. [CrossRef] [Google Scholar]
- Ouchagour L. (2019) Electric transportation in Morocco: still a way to go [Translated from French], Aujourd’hui Le Maroc. Available online http://aujourdhui.ma/automobile/transport-electrique-au-maroc-encore-du-chemin-a-parcourir (accessed on October 11, 2022). [Google Scholar]
- Chekired F., Richa A., Touil S., Bingwa B.B. (2022) Energy yield evaluation of a rainwater harvesting system using a novel agrophotovoltaics design, Desalin. Water Treat. 255, 25–27. https://doi.org/10.5004/dwt.2022.28318. [CrossRef] [Google Scholar]
- Muthirayan D., Kalathil D.M., Poolla K., Varaiya P.P. (2020) Mechanism design for demand response programs, IEEE Trans. Smart Grid 11, 61–73. https://doi.org/10.1109/TSG.2019.2917396. [CrossRef] [Google Scholar]
- Dharani R., Balasubramonian M., Babu T.S., Nastasi B. (2021) Load shifting and peak clipping for reducing energy consumption in an indian university campus, Energies 14, 558. https://doi.org/10.3390/en14030558. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.