Numéro |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Numéro d'article | 32 | |
Nombre de pages | 8 | |
DOI | https://doi.org/10.2516/stet/2024027 | |
Publié en ligne | 6 juin 2024 |
- Fikri E., Sulistiawan I.A., Riyanto A., Saputra A.E. (2023) Neutralization of acidity (pH) and reduction of total suspended solids (TSS) by solar-powered electrocoagulation system, Civ. Eng. J. 9, 5, 1160–1172. [CrossRef] [Google Scholar]
- Bedewy B.A.H., Al-Timimy S.R.A. (2023) Estimate suitable location of solar power plants distribution by GIS spatial analysis, Civ. Eng. J. 9, 5, 1217–1229. [CrossRef] [Google Scholar]
- Krishna B., Karthikeyan V. (2021) Ultra-voltage gain step-up DC-DC converter for renewable energy micro-source applications, IEEE Trans. Energy Convers. 37, 2, 947–957. [Google Scholar]
- Kabir E., Kumar P., Kumar S., Adelodun A.A., Kim K.H. (2018) Solar energy: potential and future prospects, Renew. Sustain. Energy Rev. 82, 894–900. [CrossRef] [Google Scholar]
- Phani Kumar Ch, Elanchezhian E.B., Pragaspathy S. (2022) An adaptive regulatory approach to improve the power quality in solar PV-integrated low-voltage utility grid, J. Circuits Syst. Comput. 31, 17, 2250301. [CrossRef] [Google Scholar]
- Balal A., Jafarabadi Y.P., Demir A., Igene M., Giesselmann M., Bayne S. (2023) Forecasting solar power generation utilizing machine learning models in Lubbock, Emerg. Sci. J. 7, 4, 1052–1062. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Maintain maximum power point tracking of photovoltaic using SEPIC converter, In: 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), IEEE, pp. 1–6. [Google Scholar]
- Hole S.R., Goswami A.D. (2024) Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system, Energy Harvesting Syst. 11, 1, 20230029. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage, Energy Harvesting Syst. 9, 1, 113–121. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2023) Design of an efficient MPPT optimization model via accurate shadow detection for solar photovoltaic, Energy Harvesting and Syst. 10, 2, 377–383. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Analysis and performance of solar photovoltaic energy system in India: case study, in: 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE, pp. 228–234. [Google Scholar]
- Qi J., Zhang Y., Chen Y. (2014) Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions, Renew. Energy 66, 337–345. [CrossRef] [Google Scholar]
- Olabi A.G., Abdelkareem M.A., Semeraro C., Al Radi M., Rezk H., Muhaisen O., Al-Isawi O.A., Sayed E.T. (2023) Artificial neural networks applications in partially shaded PV systems, Therm. Sci. Eng. Prog. 37, 101612. [CrossRef] [Google Scholar]
- Ragb O., Bakr H. (2023) A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading, Energy 268, 126680. [CrossRef] [Google Scholar]
- Alghamdi A.S., Bahaj A.S., Blunden L.S., Wu Y. (2019) Dust removal from solar PV modules by automated cleaning systems, Energies 12, 15, 2923. [CrossRef] [Google Scholar]
- Bhatt P.K., Kumar S.Y. (2018) Investigations on operational characteristics of a PV integrated unbalance distribution system for energy management studies, Curr. Altern. Energy 2, 1, 72–80. [CrossRef] [Google Scholar]
- Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. (2022) Solar cell efficiency tables (Version 48), Prog. Photovolt. Res. Appl. 30, 3–13. https://aurorasolar.com/blog/shading-losses-in-pv-systems-and-techniques-to-mitigate-them/ [CrossRef] [Google Scholar]
- Jain S., Sharma T., Gupta A.K. (2022) End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework, Renew. Sustain. Energy Rev. 153, 111774. [CrossRef] [Google Scholar]
- Tripathi A.K., Aruna M., Murthy C.S. (2019) Output power enhancement of solar PV panel using solar tracking system, Recent Adv. Electr. Electron. Eng. 12, 1, 45–49. [Google Scholar]
- Park C., Jeong B., Zhou P., Jang H., Kim S., Jeon H., Nam D., Rashedi A. (2022) Live-Life cycle assessment of the electric propulsion ship using solar PV, Appl. Energy 309, 118477. [CrossRef] [Google Scholar]
- Mohapatra A., Nayak B., Das P., Mohanty K.B. (2017) A review on MPPT techniques of PV system under partial shading condition, Renew. Sustain. Energy Rev. 80, 854–867. [CrossRef] [Google Scholar]
- Bingöl O., Özkaya B. (2018) Analysis and comparison of different PV array configurations under partial shading conditions, Solar Energy 160, 336–343. [CrossRef] [Google Scholar]
- Pawluk R.E., Chen Y., She Y. (2019) Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation, Renew. Sustain. Energy Rev. 107, 171–182. [CrossRef] [Google Scholar]
- Zhang W., Liu S., Gandhi O., Rodríguez-Gallegos C.D., Quan H., Srinivasan D. (2021) Deep-learning-based probabilistic estimation of solar PV soiling loss, IEEE Trans. Sustain. Energy 12, 4, 2436–2444. [Google Scholar]
- Lakshika K.H., Boralessa M.K.S., Perera M.K., Wadduwage D.P., Saravanan V., Hemapala K.M.U. (2020) Reconfigurable solar photovoltaic systems: A review, Heliyon 6, 11, e05530. [CrossRef] [PubMed] [Google Scholar]
- Venkatramanan D., John V. (2019) A reconfigurable solar photovoltaic grid-tied inverter architecture for enhanced energy access in backup power applications, IEEE Trans. Ind. Electron 67, 12, 10531–10541. [Google Scholar]
- Krishna B., Uma Maheswar Rao P., Karthikeyan V. (2022) High-gain single-switch single-input dual-output DC-DC converter with reduced switching stress, Int. J. Circuit Theory Appl. 50, 6, 1998–2015. [CrossRef] [Google Scholar]
- López-Erauskin R., Gonzalez A., Petrone G., Spagnuolo G., Gyselinck J. (2020) Multi-variable perturb and observe algorithm for grid-tied PV systems with joint central and distributed MPPT configuration, IEEE Trans. Sustain. Energy 12, 1, 360–367. [Google Scholar]
- Alonso R., Ibáñez P., Martinez V., Román E., Sanz A. (2010) Analysis of performance of new distributed MPPT architectures, in: 2010 IEEE International Symposium on Industrial Electronics, IEEE, pp. 3450–3455. [CrossRef] [Google Scholar]
- Bhatt P.K., Kumar S.Y. (2017) Filtering scheme to mitigate the harmonic issues in solar PV integrated nonlinear distribution system, Recent Adv. Electr. Electron. Eng. 1, 1, 44–52. [Google Scholar]
- Chao Y., Chen C., Chang L. (2014) Distributed maximum power point tracking for photovoltaic systems, IEEE Trans. Ind. Electron., 61, 4, 1830–1842. [CrossRef] [Google Scholar]
- Sharma R., Kumar V., Sharma S., Karthikeyan V., Kumaravel S. (2018) High efficient solar PV fed grid connected system, in: 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), IEEE, pp. 1–6. [Google Scholar]
- Zhang T., Jiang J., Chen D. (2021) An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter, Renew. Energy 178, 1144–1155. [CrossRef] [Google Scholar]
- Uno M., Shinohara T., Saito Y., Kukita A. (2019) Review, comparison, and proposal for PWM converters integrating differential power processing converter for small exploration rovers, Energies 12, 10, 1919. [CrossRef] [Google Scholar]
- Bell R., Pilawa-Podgurski R.C. (2015) Decoupled and distributed maximum power point tracking of series-connected photovoltaic submodules using differential power processing, IEEE J. Emerg. Sel. Top. Power Electron. 3, 4, 881–891. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.