Numéro
Sci. Tech. Energ. Transition
Volume 79, 2024
Synthesis and characterisation of porous materials for clean energy applications
Numéro d'article 31
Nombre de pages 15
DOI https://doi.org/10.2516/stet/2024023
Publié en ligne 6 juin 2024
  • Adler P.M. (1992) Porous media: geometry and transports, Butterworth-Heineman, Boston, MA, p. 544. [Google Scholar]
  • Dullien F.A.L. (1979) Porous media: fluid transport and pore structure, Academic press. [Google Scholar]
  • Raybaud P., Toulhoat H. (2013) Catalysis by transition metal sulphides: From molecular theory to industrial application, Editions Technip. [Google Scholar]
  • Carman P.C. (1937) Fluid flow through granular beds, Trans. Inst. Chem. Eng. 15, 150–166. [Google Scholar]
  • Clennell M.B. (1997) Tortuosity: a guide through the maze, Geol. Soc. Spec. Publ. 122, 1, 299–344. [CrossRef] [Google Scholar]
  • Fu J., Thomas H.R., Li C. (2021) Tortuosity of porous media: image analysis and physical simulation, Earth-Sci. Rev. 212, 103439. [CrossRef] [Google Scholar]
  • Ghanbarian B., Hunt A.G., Ewing R.P., Sahimi M. (2013) Tortuosity in porous media: a critical review, Soil Sci. Soc. Am. J. 77, 5, 1461–1477. [CrossRef] [Google Scholar]
  • Bini F., Pica A., Marinozzi A., Marinozzi F. (2019) A 3D model of the effect of tortuosity and constrictivity on the diffusion in mineralized collagen fibril, Sci. Rep. UK 9, 1, 2658. [CrossRef] [Google Scholar]
  • Van Brakel J., Heertjes P.M. (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor, Int. J. Heat Mass Tranf. 17, 9, 1093–1103. [CrossRef] [Google Scholar]
  • Balberg I., Anderson C.H., Alexander S., Wagner N. (1984) Excluded volume and its relation to the onset of percolation, Phys. Rev. B 30, 7, 3933. [CrossRef] [Google Scholar]
  • Jouannot-Chesney P., Jernot J.-P., Lantuéjoul C. (2017) Percolation transition and topology, Image Anal. Stereol. 36, 95–103. [Google Scholar]
  • Petersen E.E. (1958) Diffusion in a pore of varying cross section, AIChE J. 4, 3, 343–345. [CrossRef] [Google Scholar]
  • Tran V.-D., Moreaud M., Thiébaut E., Denis L., Becker J.-M. (2014) Inverse problem approach for the alignment of electron tomographic series, Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 69, 2, 279–291. [CrossRef] [Google Scholar]
  • Chaniot J., Moreaud M., Sorbier L., Becker J.-M., Fournel T. (2019) Tortuosimetric operator for complex porous media characterization, Image Anal. Stereol. 38, 1, 25–41. [CrossRef] [MathSciNet] [Google Scholar]
  • Chaniot J., Moreaud M., Sorbier L., Jeulin D., Becker J.-M., Fournel T. (2020) Heterogeneity assessment based on average variations of morphological tortuosity for complex porous structures characterization, Image Anal. Stereol. 39, 2, 111–128. [MathSciNet] [Google Scholar]
  • Stenzel O., Pecho O., Holzer L., Neumann M., Schmidt V. (2016) Predicting effective conductivities based on geometric microstructure characteristics, AIChE J. 62, 5, 1834–1843. [CrossRef] [Google Scholar]
  • Lantuéjoul C., Beucher S. (1981) On the use of the geodesic metric in image analysis, J. Microsc. 121, 1, 39–49. [Google Scholar]
  • Decker L., Jeulin D., Tovena I. (1998) 3D morphological analysis of the connectivity of a porous medium, Acta Stereol. 17, 1. [Google Scholar]
  • Saha P.K., Borgefors G., di Baja G.S. (2016) A survey on skeletonization algorithms and their applications, Pattern Recogn. Lett. 76, 3–12. [CrossRef] [Google Scholar]
  • Peyrega C., Jeulin D. (2013) Estimation of tortuosity and reconstruction of geodesic paths in 3D, Image Anal. Stereol. 32, 1, 27–43. [CrossRef] [MathSciNet] [Google Scholar]
  • Berrocal C.G., Löfgren I., Lundgren K., Görander N., Halldén C. (2016) Characterisation of bending cracks in R/FRC using image analysis, Cement Concrete Res. 90, 104–116. [CrossRef] [Google Scholar]
  • Gommes C.J., Bons A.-J., Blacher S., Dunsmuir J.H., Tsou A.H. (2009) Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions, AIChE J. 55, 8, 2000–2012. [CrossRef] [Google Scholar]
  • Boudreau B.P. (1996) The diffusive tortuosity of fine-grained unlithified sediments, Geochim. Cosmochim. Acta 60, 16, 3139–3142. [CrossRef] [Google Scholar]
  • Moreaud M., Celse B., Tihay F. (2008) Analysis of the accessibility of macroporous alumino-silicate using 3D-TEM images, in: Vol. 8 of Proceedings of Materials Science & Technology 2008 Conference and Exhibition: MS&T, pp. 1153–1164. [Google Scholar]
  • Batista A.T.F., Baaziz W., Taleb A.-L., Chaniot J., Moreaud M., Legens C., Aguilar-Tapia A., Proux O., Hazemann J.-L., Diehl F., Chizallet C., Gay A.-S., Ersen O., Raybaud P. (2020) Atomic scale insight into the formation, size and location of platinum nanoparticles supported on γ-alumina, ACS Catal. 10, 7, 4193–4204. [CrossRef] [Google Scholar]
  • Caflisch R.E. (1998) Monte Carlo and quasi-Monte Carlo methods, Acta Numer. 7, 1–49. [CrossRef] [Google Scholar]
  • Hammoumi A., Moreaud M., Jolimaitre E., Chevalier T., Novikov A., Klotz M. (2021) Graph-based M-tortuosity estimation, in: Discrete Geometry and Mathematical Morphology, J. Lindblad, F. Malmberg, N. Sladoje (eds), Lecture Notes in Computer Science, Springer, Cham, pp. 416–428. [CrossRef] [MathSciNet] [Google Scholar]
  • Chaniot J., Moreaud M., Sorbier L., Becker J.-M., Fournel T. (2022) Scalable morphological accessibility of complex microstructures, Comp. Mater. Sci. 203, 111062. [CrossRef] [Google Scholar]
  • Allard J.F., Castagnede B., Henry M., Lauriks W. (1994) Evaluation of tortuosity in acoustic porous materials saturated by air, Rev. Sci. Instrum. 65, 3, 754–755. [CrossRef] [Google Scholar]
  • Johnson D.L., Plona T.J., Scala C., Pasierb F., Kojima H. (1982) Tortuosity and acoustic slow waves, Phys. Rev. Lett. 49, 25, 1840. [CrossRef] [Google Scholar]
  • Kingman J.F.C. (1992) Poisson processes, volume 3 of Oxford studies in probability, Clarendon Press, Oxford Science Publications. [CrossRef] [Google Scholar]
  • Jeulin D. (2012) Morphology and effective properties of multi-scale random sets: A review, C.R. Mecanique 340, 4–5, 219–229. [CrossRef] [Google Scholar]
  • Moreaud M., Chaniot J., Fournel T., Becker J.-M., Sorbier L. (2018) Multi-scale stochastic morphological models for 3D complex microstructures, in: 2018 17th Workshop on Information Optics (WIO), IEEE, Quebec, Canada, pp. 1–3. [Google Scholar]
  • Wang H., Pietrasanta A., Jeulin D., Willot F., Faessel M., Sorbier L., Moreaud M. (2015) Modelling mesoporous alumina microstructure with 3D random models of platelets, J. Microsc. 260, 3, 287–301. [CrossRef] [PubMed] [Google Scholar]
  • plug im! (2018) An open access and customizable software for signal and image processing. Available at https://www.plugim.fr. [Google Scholar]
  • Chiu S.N., Stoyan D., Kendall W.S., Mecke J. (2013) Stochastic geometry and its applications, John Wiley & Sons. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.