Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2516/stet/2024027 | |
Published online | 06 June 2024 |
- Fikri E., Sulistiawan I.A., Riyanto A., Saputra A.E. (2023) Neutralization of acidity (pH) and reduction of total suspended solids (TSS) by solar-powered electrocoagulation system, Civ. Eng. J. 9, 5, 1160–1172. [CrossRef] [Google Scholar]
- Bedewy B.A.H., Al-Timimy S.R.A. (2023) Estimate suitable location of solar power plants distribution by GIS spatial analysis, Civ. Eng. J. 9, 5, 1217–1229. [CrossRef] [Google Scholar]
- Krishna B., Karthikeyan V. (2021) Ultra-voltage gain step-up DC-DC converter for renewable energy micro-source applications, IEEE Trans. Energy Convers. 37, 2, 947–957. [Google Scholar]
- Kabir E., Kumar P., Kumar S., Adelodun A.A., Kim K.H. (2018) Solar energy: potential and future prospects, Renew. Sustain. Energy Rev. 82, 894–900. [CrossRef] [Google Scholar]
- Phani Kumar Ch, Elanchezhian E.B., Pragaspathy S. (2022) An adaptive regulatory approach to improve the power quality in solar PV-integrated low-voltage utility grid, J. Circuits Syst. Comput. 31, 17, 2250301. [CrossRef] [Google Scholar]
- Balal A., Jafarabadi Y.P., Demir A., Igene M., Giesselmann M., Bayne S. (2023) Forecasting solar power generation utilizing machine learning models in Lubbock, Emerg. Sci. J. 7, 4, 1052–1062. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Maintain maximum power point tracking of photovoltaic using SEPIC converter, In: 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), IEEE, pp. 1–6. [Google Scholar]
- Hole S.R., Goswami A.D. (2024) Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system, Energy Harvesting Syst. 11, 1, 20230029. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage, Energy Harvesting Syst. 9, 1, 113–121. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2023) Design of an efficient MPPT optimization model via accurate shadow detection for solar photovoltaic, Energy Harvesting and Syst. 10, 2, 377–383. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Analysis and performance of solar photovoltaic energy system in India: case study, in: 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE, pp. 228–234. [Google Scholar]
- Qi J., Zhang Y., Chen Y. (2014) Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions, Renew. Energy 66, 337–345. [CrossRef] [Google Scholar]
- Olabi A.G., Abdelkareem M.A., Semeraro C., Al Radi M., Rezk H., Muhaisen O., Al-Isawi O.A., Sayed E.T. (2023) Artificial neural networks applications in partially shaded PV systems, Therm. Sci. Eng. Prog. 37, 101612. [CrossRef] [Google Scholar]
- Ragb O., Bakr H. (2023) A new technique for estimation of photovoltaic system and tracking power peaks of PV array under partial shading, Energy 268, 126680. [CrossRef] [Google Scholar]
- Alghamdi A.S., Bahaj A.S., Blunden L.S., Wu Y. (2019) Dust removal from solar PV modules by automated cleaning systems, Energies 12, 15, 2923. [CrossRef] [Google Scholar]
- Bhatt P.K., Kumar S.Y. (2018) Investigations on operational characteristics of a PV integrated unbalance distribution system for energy management studies, Curr. Altern. Energy 2, 1, 72–80. [CrossRef] [Google Scholar]
- Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. (2022) Solar cell efficiency tables (Version 48), Prog. Photovolt. Res. Appl. 30, 3–13. https://aurorasolar.com/blog/shading-losses-in-pv-systems-and-techniques-to-mitigate-them/ [CrossRef] [Google Scholar]
- Jain S., Sharma T., Gupta A.K. (2022) End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework, Renew. Sustain. Energy Rev. 153, 111774. [CrossRef] [Google Scholar]
- Tripathi A.K., Aruna M., Murthy C.S. (2019) Output power enhancement of solar PV panel using solar tracking system, Recent Adv. Electr. Electron. Eng. 12, 1, 45–49. [Google Scholar]
- Park C., Jeong B., Zhou P., Jang H., Kim S., Jeon H., Nam D., Rashedi A. (2022) Live-Life cycle assessment of the electric propulsion ship using solar PV, Appl. Energy 309, 118477. [CrossRef] [Google Scholar]
- Mohapatra A., Nayak B., Das P., Mohanty K.B. (2017) A review on MPPT techniques of PV system under partial shading condition, Renew. Sustain. Energy Rev. 80, 854–867. [CrossRef] [Google Scholar]
- Bingöl O., Özkaya B. (2018) Analysis and comparison of different PV array configurations under partial shading conditions, Solar Energy 160, 336–343. [CrossRef] [Google Scholar]
- Pawluk R.E., Chen Y., She Y. (2019) Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation, Renew. Sustain. Energy Rev. 107, 171–182. [CrossRef] [Google Scholar]
- Zhang W., Liu S., Gandhi O., Rodríguez-Gallegos C.D., Quan H., Srinivasan D. (2021) Deep-learning-based probabilistic estimation of solar PV soiling loss, IEEE Trans. Sustain. Energy 12, 4, 2436–2444. [Google Scholar]
- Lakshika K.H., Boralessa M.K.S., Perera M.K., Wadduwage D.P., Saravanan V., Hemapala K.M.U. (2020) Reconfigurable solar photovoltaic systems: A review, Heliyon 6, 11, e05530. [CrossRef] [PubMed] [Google Scholar]
- Venkatramanan D., John V. (2019) A reconfigurable solar photovoltaic grid-tied inverter architecture for enhanced energy access in backup power applications, IEEE Trans. Ind. Electron 67, 12, 10531–10541. [Google Scholar]
- Krishna B., Uma Maheswar Rao P., Karthikeyan V. (2022) High-gain single-switch single-input dual-output DC-DC converter with reduced switching stress, Int. J. Circuit Theory Appl. 50, 6, 1998–2015. [CrossRef] [Google Scholar]
- López-Erauskin R., Gonzalez A., Petrone G., Spagnuolo G., Gyselinck J. (2020) Multi-variable perturb and observe algorithm for grid-tied PV systems with joint central and distributed MPPT configuration, IEEE Trans. Sustain. Energy 12, 1, 360–367. [Google Scholar]
- Alonso R., Ibáñez P., Martinez V., Román E., Sanz A. (2010) Analysis of performance of new distributed MPPT architectures, in: 2010 IEEE International Symposium on Industrial Electronics, IEEE, pp. 3450–3455. [CrossRef] [Google Scholar]
- Bhatt P.K., Kumar S.Y. (2017) Filtering scheme to mitigate the harmonic issues in solar PV integrated nonlinear distribution system, Recent Adv. Electr. Electron. Eng. 1, 1, 44–52. [Google Scholar]
- Chao Y., Chen C., Chang L. (2014) Distributed maximum power point tracking for photovoltaic systems, IEEE Trans. Ind. Electron., 61, 4, 1830–1842. [CrossRef] [Google Scholar]
- Sharma R., Kumar V., Sharma S., Karthikeyan V., Kumaravel S. (2018) High efficient solar PV fed grid connected system, in: 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), IEEE, pp. 1–6. [Google Scholar]
- Zhang T., Jiang J., Chen D. (2021) An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter, Renew. Energy 178, 1144–1155. [CrossRef] [Google Scholar]
- Uno M., Shinohara T., Saito Y., Kukita A. (2019) Review, comparison, and proposal for PWM converters integrating differential power processing converter for small exploration rovers, Energies 12, 10, 1919. [CrossRef] [Google Scholar]
- Bell R., Pilawa-Podgurski R.C. (2015) Decoupled and distributed maximum power point tracking of series-connected photovoltaic submodules using differential power processing, IEEE J. Emerg. Sel. Top. Power Electron. 3, 4, 881–891. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.