Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 22
Number of page(s) 26
DOI https://doi.org/10.2516/stet/2025002
Published online 14 February 2025
  • Chen Q., Li Y., Zhang X., Liu Z. (2022) Optimization and control of hybrid microgrids with electric vehicle charging and battery storage: a case study, IEEE Trans. Power Syst. 37, 2, 1241–1250. [CrossRef] [Google Scholar]
  • Wang J., Sun H., Liu H., Zhang X., Yang W. (2021) Control and optimization of hybrid microgrids with EVs and battery storage: a review, Renew. Sust. Energy Rev. 136, 110376. [Google Scholar]
  • Chen M., Zhang R., Wang Y., Li J. (2021) Advanced energy management for hybrid microgrids with electric vehicles and battery storage systems, IEEE Trans. Smart Grid 12, 3, 2265–2276. [Google Scholar]
  • Güven A.F., Yücel E. (2024) Sustainable energy integration and optimization in microgrids: enhancing efficiency with electric vehicle charging solutions, Electr. Eng. https://doi.org/10.1007/s00202-024-02619-x. [Google Scholar]
  • Güven A.F. (2024) Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management, Energy 303, 131968. [CrossRef] [Google Scholar]
  • Güven A.F., Abdelaziz A.Y., Samy M.M., Barakat S. (2024) Optimizing energy dynamics: a comprehensive analysis of hybrid energy storage systems integrating battery banks and supercapacitors, Energy Convers. Manage. 312, 118560. [CrossRef] [Google Scholar]
  • Güven A.F. (2024) Heuristic techniques and evolutionary algorithms in microgrid optimization problems, in: Pandey A.K., Padmanaban S., Tripati S.L., Patel V., Patel V.M. (eds), Microgrid, 1st edn., CRC Press, pp. 260–301. eBook ISBN 9781003481836. [CrossRef] [Google Scholar]
  • Güven A.F., Yörükeren N., Mengi O.Ö. (2024) Multi-objective optimization and sustainable design: A performance comparison of metaheuristic algorithms used for on-grid and off-grid hybrid energy systems, Neural Comput. Appl. 36, 7559–7594. [CrossRef] [Google Scholar]
  • Güven A.F., Yörükeren N., Tag-Eldin E., Samy M.M. (2023) Multi-objective optimization of an islanded green energy system utilizing sophisticated hybrid metaheuristic approach, IEEE Access 11, 103044–103068. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) An industrial design of 400 V–48V, 98.2% peak efficient charger using E-mode GaN technology with wide operating ranges for xEV applications, Int J Numer Model 37, 2, e3194. [CrossRef] [Google Scholar]
  • Narasipuram R. (2024) A novel high step-up DC-DC converter using state space modelling technique for battery storage applications, Clean Energy Sustainability 2, 10003. [CrossRef] [Google Scholar]
  • Chaitanya S., Patnaik N.R., Raju C.B.A. (2018) A novel transformerless asymmetrical fifteen level inverter topology for renewable energy applications, in: 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, IEEE, pp. 1–4. [Google Scholar]
  • Narasipuram R., Karkhanis V., Ellinger M., Saranath K.M., Alagarsamy G., Jadhav R. (2024) Systems engineering – a key approach to transportation electrification, SAE Technical Paper 2024-26-0128. https://doi.org/10.4271/2024-26-0128. [Google Scholar]
  • Liu X., Zhang J., Wang H., Zhao X. (2022) Energy management and control strategies for hybrid microgrids with electric vehicles and battery storage systems: a review, IEEE Access 10, 93485–93505. [Google Scholar]
  • Zhang H., Chen Z., Yu C., Yue D., Xie X., Hancke G.P. (2024) Event-trigger-based resilient distributed energy management against FDI and DoS attack of cyber–physical system of smart grid, IEEE Trans. Syst. Man. Cybern. 54, 5, 3220–3230. [CrossRef] [Google Scholar]
  • Saranya D.N.S., Vijay Babu A.R., Srinivasa Rao G., Tagore Y.R., Bharath Kumar N. (2015) Fuel cell powered bidirectional DC-DC converter for electric vehicles. J, Control Theory Appl. 8, 109–120. [Google Scholar]
  • Suresh K., Venkatesan M., Vijay Babu A.R. (2017) Design and implementation of energy storage system using converters and renewable energy sources, J. Adv. Res. Dyn. Control Syst. 9, 5, 259–269. [Google Scholar]
  • Chakraborty S., Singh R., Sharma K. (2023) Adaptive neuro-fuzzy inference systems for efficient energy management in hybrid microgrids, Renew. Energy 205, 123–134. [Google Scholar]
  • Zhao Y., Wang L., Zhang Q. (2023) Dynamic adaptation in uncertain environments using ANFIS for robotic control, IEEE Trans. Control Syst. Technol. 31, 5, 1550–1562. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) Steady-state and transient analysis of LLC and iLLC resonant DC-DC converters with wide voltage operations using GaN technology for light-duty xEV charging systems, Energy Technol. In press. https://doi.org/10.1002/ente.202400506. [Google Scholar]
  • Zhang H., Yue D., Dou C., Hancke G.P. (2023) PBI Based multi-objective optimization via deep reinforcement elite learning strategy for micro-grid dispatch with frequency dynamics. IEEE Trans, Power Syst. 38, 1, 488–498. [CrossRef] [Google Scholar]
  • Ahmad F., Ashraf I., Iqbal A., Khan I., Marzband M. (2022) Optimal location and energy management strategy for EV fast charging station with integration of renewable energy sources, in: Proceedings of the 2022 IEEE Silchar Subsection Conference (SILCON), Silchar, India, 04–06 November, IEEE, pp. 1–6. [Google Scholar]
  • Tabassum S., Vijay Babu A.R., Dheer D.K. (2024) Hybrid smart microgrid system modelling, design and control using an adaptive neuro fuzzy inference system, in: Proceedings of the 2024 3rd International Conference on Emerging Frontiers in Electrical and Electronics Technology (ICEFEET), Patna, India, IEEE, pp. 1–6. [Google Scholar]
  • Vijay Babu A.R., Rao G.S., Kumar P.M. (2020) A novel diagnostic technique to detect flooding and dehydration states of an air breathing fuel cell used in fuel cell vehicles, Int. J. Electr. Hybrid Veh. 12, 1, 32–43. [CrossRef] [Google Scholar]
  • Ma K., Yu Y., Yang B., Yang J. (2019) Demand-side energy management considering price oscillations for residential building heating and ventilation systems, IEEE Trans. Ind. Inform. 15, 8, 4742–4752. [CrossRef] [Google Scholar]
  • Tabassum S., Vijay Babu A.R., Dheer D.K., Pasha M.M. (2022) Inspection and surveillance of energy consumption in IoT-smart grid using wireless sensor network, in: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Durgapur, India, IEEE, pp. 308–312. [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2024) Assessment of E-mode GaN technology, practical power loss, and efficiency modelling of iL2C resonant DC-DC converter for xEV charging applications, J. Energy Storage 91, 112008. [CrossRef] [Google Scholar]
  • Smith J., Brown L., Thomas M. (2023) Control strategies for electric vehicle charging stations, IEEE Trans. Smart Grid 12, 3, 107. [Google Scholar]
  • Khan M., Ahmed S., Khan A. (2023) Impact of voltage control in EV charging stations, Renew. Energy J. 47, 2. [Google Scholar]
  • Zhao L., Liu Y., Wang L., Xie F. (2022) Comparative analysis of power ripple in EV charging systems, Int. J. Elec. Power. Syst. 135. [Google Scholar]
  • Shirkhani M., Tavoosi J., Danyali S., Sarvenoee A.K., Abdali A., Mohammadzadeh A., Zhang C. (2023) A review on microgrid decentralized energy/voltage control structures and methods, Energy Rep. 10, 368–380. [CrossRef] [Google Scholar]
  • Wang H., Zhang Y., Liu C., Zhang X. (2023) SOC management in EV charging stations, Energy Convers. Manage. 252. [Google Scholar]
  • Zhang H., Yu C., Zeng M., Ye T., Yue D., Dou C., Hancke G.P. (2024) Homomorphic encryption-based resilient distributed energy management under cyber-attack of micro-grid with event-triggered mechanism, IEEE Trans. Smart Grid 15, 5, 5115–5126. [CrossRef] [Google Scholar]
  • Vijay Babu A.R., Rajyalakshmi V., Suresh K. (2017) Renewable energy integrated high gain DC-DC converter with multilevel inverter for water pumping applications, J. Adv. Res. Dyn. Control Syst. 9, 1, 172–190. [Google Scholar]
  • Ma K., Yang J., Liu P. (2020) Relaying-assisted communications for demand response in smart grid: cost modeling, game strategies, and algorithms, IEEE J. Sel. Areas Commun. 38, 1, 48–60. [CrossRef] [Google Scholar]
  • Zhang Y., Chen Z., Wang L. (2020) Optimization of hybrid renewable energy systems in urban areas, Renew. Energy 156, 1125–1135. [Google Scholar]
  • Gao S., Chen Y., Song Y., Yu Z., Wang Y. (2024) An efficient half-bridge MMC model for EMTP-type simulation based on hybrid numerical integration, IEEE Trans. Power Syst. 39, 1, 1162–1177. [CrossRef] [Google Scholar]
  • Duan Y., Zhao Y., Hu J. (2023) An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: modeling, optimization and analysis, Sustain. Energy Grids Netw. 34, 101004. [CrossRef] [Google Scholar]
  • Narasipuram R.P., Mopidevi S. (2023) A dual primary side FB DC-DC converter with variable frequency phase shift control strategy for on/off board EV charging applications, in: Proceedings of the 2023 9th IEEE India International Conference on Power Electronics (IICPE), Sonipat, India, IEEE, pp. 1–5. [Google Scholar]
  • Feng J., Yao Y., Liu Z. (2024) Developing an optimal building strategy for electric vehicle charging stations: automaker role, Environ. Dev. Sustain. In press. https://doi.org/10.1007/s10668–024-05326–6. [Google Scholar]
  • Rong Q., Hu P., Wang L., Li Y., Yu Y., Wang D., Cao Y. (2024) Asymmetric sampling disturbance-based universal impedance measurement method for converters, IEEE Trans. Power Electron. 39, 12, 15457–15461. [CrossRef] [Google Scholar]
  • Meng Q., Tong X., Hussain S., Luo F., Zhou F., He Y., Li B. (2024) Enhancing distribution system stability and efficiency through multi-power supply startup optimization for new energy integration. IET Gener, Transm. Distrib. 18, 21, 3487–3500. [CrossRef] [Google Scholar]
  • Tabassum S., Vijay Babu A.R., Dheer D.K. (2024) A comprehensive exploration of IoT-enabled smart grid systems: power quality issues, solutions, and challenges, Sci. Technol. Energy Transition 79, 18. [CrossRef] [Google Scholar]
  • A. K. K. Y. A. S. (2020) Evaluation of PID controllers in EV charging, Energy Rep. 6, 345–355. [CrossRef] [Google Scholar]
  • Rong Q., Hu P., Yu Y., Wang D., Cao Y., Xin H. (2024) Virtual external perturbance-based impedance measurement of grid-connected converter, IEEE Trans. Ind. Electron. 1–11. https://doi.org/10.1109/TIE.2024.3436629. [CrossRef] [Google Scholar]
  • Patel R., Kumar R., Verma A. (2023) Battery SOC control in EV chargers, IEEE Trans. Energy Convers. 38, 1. [Google Scholar]
  • Gupta V., Sharma N., Gupta M. (2023) Artificial intelligence in SOC management, J. Electr. Syst. Control 13, 2. [Google Scholar]
  • Zhang Y., Li X., Zhang R. (2023) Power ripple control in EV charging stations, Renew. Sust. Energy Rev. 164. [Google Scholar]
  • Li X., Wang Y., Zhang H. (2022) Fuzzy logic in EV charging stations, J. Electr. Eng. Technol. 19. [Google Scholar]
  • Brown T., Lee P., Smith J. (2023) Overshoot management in EV charging, J. Power Sources 420. [Google Scholar]
  • Kaur P., Singh D., Sharma S. (2023) Settling time reduction in EV chargers, IEEE Trans. Sustain. Energy 16, 2. [Google Scholar]
  • Kumar S., Patil A., Sharma P. (2022) Energy utilization in EV charging, Int. J. Electr. Comput. Eng. 14, 5. [Google Scholar]
  • Rao P., Kumar R., Patel R. (2023) Efficiency analysis of EV charging control strategies, Energy Procedia 250. [Google Scholar]
  • Kumar N., Soni M., Gupta R. (2023) Comparative study of control strategies for EV charging stations, Energy Environ. Sci. 16. [Google Scholar]
  • Singh A., Yadav R., Kumar S. (2022) Performance metrics of EV chargers using different controllers, J. Electr. Energy Syst. 12, 3. [Google Scholar]
  • Shafiq S., Khan A.H., Iqbal M., Abido M.A. (2022) Proportional-integral-derivative (PID) control of electric vehicle charging for enhanced grid stability, IEEE Access 10, 65734–65746. [Google Scholar]
  • Güven A.F., Mengi O.Ö. (2023) Assessing metaheuristic algorithms in determining dimensions of hybrid energy systems for isolated rural environments: Exploring renewable energy systems with hydrogen storage features, J. Clean. Prod. 428, 139339. [CrossRef] [Google Scholar]
  • Güven A.F., Yörükeren N., Samy M.M. (2022) Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches, Energy 253, 124089. [CrossRef] [Google Scholar]
  • Güven A.F., Yücel E. (2023) Application of HOMER in assessing and controlling renewable energy-based hybrid EV charging stations across major Turkish cities, Energy Rep. 8, 4, 747–780. [Google Scholar]
  • Güven A.F., Samy M.M. (2022) Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches, Energy Convers. Manage. 269, 116058. [CrossRef] [Google Scholar]
  • Güven A.F. (2023) Adjustment of the two-axis robot arm position with the control of synchronous motors set by 2DOFPID and fractional order PID controller, J. Control Syst. Tech. 13, 2, 625–638. [Google Scholar]
  • Güven A.F., Yörükeren N. (2024) A comparative study on hybrid GA-PSO performance for stand-alone hybrid energy systems optimization, Sigma J. Eng. Nat. Sci. 42, 5, 1410–1438. [Google Scholar]
  • Güven A.F. (2024) Exploring solar energy systems: A comparative study of optimization algorithms, MPPTs, and controllers, Energy 18, 7, 887–920. [Google Scholar]
  • Güven A.F., Mengi O.Ö. (2024) Nature-inspired algorithms for optimizing fractional order PID controllers in time-delayed systems, Control Eng. Pract., 1251–1279. In press. [Google Scholar]
  • Güven A.F., Mengi O.Ö., Elseify M.A., Kamel S. (2024) Comprehensive optimization of PID controller parameters for DC motor speed management using a modified jellyfish search algorithm, Control Eng. Pract., In press. [Google Scholar]
  • Poltronieri F., Xhonneux J.-C., Verhaegen M., Astolfi A. (2021) Artificial neural network-based smart EV charging control to mitigate grid impact, IEEE Trans. Transp. Electr. 7, 4, 2143–2154. [CrossRef] [Google Scholar]
  • Saleh M.A., Ghoneim S.S., Rezk H. (2023) Fuzzy logic-based power management strategy for EV charging station with hybrid energy sources, IEEE Trans. Ind. Appl. 59, 1, 302–312. [Google Scholar]
  • Kumar N., Kumar R., Sharma R. (2021) Adaptive neuro-fuzzy inference system-based energy management for EV charging in hybrid microgrid, J. Electr. Eng. Automation 3, 4, 159–169. [Google Scholar]
  • Vijay Babu A.R., Srinivasa Rao G., Manoj Kumar P., Suman S., Sihari Babu A., Umamaheswararao Ch., Ravi Teja A.J.R. (2015) Energy and green house gas payback times of an air breathing fuel cell stack, J. Electr. Eng. 15, 52–62. [Google Scholar]
  • Suresh K., Vijay Babu A.R., Venkatesh P.M. (2018) Experimental investigations on grid integrated wind energy storage systems using neuro fuzzy controller, J. Adv. Res. Dyn. Control Syst. 91, 3, 123–130. [Google Scholar]
  • Tabassum S., Vijay Babu A.R., Dheer D.K. (2024) Real-time power quality enhancement in smart grids through IoT and adaptive neuro-fuzzy systems, Sci. Technol. Energy Transition 79, 23. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.