Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
Article Number 23
Number of page(s) 16
DOI https://doi.org/10.2516/stet/2024097
Published online 14 February 2025
  • Fan F.R., Tian Z.Q., Wang Z.L. (2012) Flexible triboelectric generator, Nano Energy 1, 2, 328–334. [CrossRef] [Google Scholar]
  • Wang C.J, Meng F., Fu Q., Fan C.H., Cui L. (2022) Research on wave energy harvesting technology of annular triboelectric nanogenerator based on multi-electrode structure, Micromachines 13, 10, 1619–1619. [CrossRef] [PubMed] [Google Scholar]
  • Zheng Y., Li X., Zheng M.L., Zi Y.L., Cheng S.B., Cui H.Z., Li X.Y. (2023) MoSe2 enhanced raindrop triboelectric nanogenerators and its energy conversion analysis, Adv. Funct. Mater. 34, 1–10. [Google Scholar]
  • Mai N.C., Ha T.L., Phu D.H., Truong T.H., Dinh M.T.N., La T.T.H., Bui V. (2021) Surface patterning of GO-S/PLA nanocomposite with the assistance of an ionic surfactant for high-performance triboelectric nanogenerator, Int. J. Energy Res. 45, 14, 20047–20056. [CrossRef] [Google Scholar]
  • Fan B.B., Liu G.X., Fu X.P., Wang Z. (2022) Composite film with hollow hierarchical silica/perfluoropolyether filler and surface etching for performance enhanced triboelectric Nanogenerators, Chem. Eng. J. 446, 3–13. [Google Scholar]
  • Nassim R., Somayeh F., Masoumeh K.K., Leyla S., Azam I., Sadegh S., Raheleh M., Daryoosh V. (2023) High-performance flexible and stretchable self-powered surface engineered PDMS-TiO2 nanocomposite-based humidity sensors driven by triboelectric nanogenerator with full sensing range, Sens. Actuat. B Chem. 1, 378–388. [Google Scholar]
  • Du Y., Zhang S.J., Cheng Z.X. (2024) Flexocatalysis of nanoscale titanium dioxide, Nano Energy 127, 109731–109741. [CrossRef] [Google Scholar]
  • Shee C., Banerjee S., Bairagi S. (2024) A critical review on polyvinylidene fluoride (PVDF)/zinc oxide (ZnO)-based piezoelectric and triboelectric nanogenerators, J. Phys. Energy 6, 3–13. [Google Scholar]
  • Kannan R.T, Roji S.S.S. (2023) Performance and emission characteristics of salviniaceae filiculoides aquatic fern oil and SiO2 nano additive biodiesel in Cl engine, Sci. Technol. Energy Transit. 78, 4, 10–20. [CrossRef] [Google Scholar]
  • He Z.K., Ma M., Xu X.C., Wang J.Y., Chen F. (2012) Fabrication of superhydro-phobic coating via a facile and versatile method based onnanoparticle aggregates, Appl. Surf. Sci. 258, 7, 2544–2550. [CrossRef] [Google Scholar]
  • Gong S.K., Wang X.W., Tang B.Z., Xiong Z.Y., Qi S., Chen J., Yu P., Guo H.Y. (2024) Achieving Self-reinforcing triboelectric-electromagnetic hybrid nanogenerator by magnetocaloric and magnetization effects of gadolinium, Adv. Mater. (Deerfield Beach, Fla.) 36, 26, 2402824–2402824. [CrossRef] [Google Scholar]
  • Hao Z., Yun T., Zhe C. (2024) Voltage control method for multi-energy system based on the coupling of renewable energy hydrogen production and storage, Sci. Technol. Energy Trans. 79, 60–71. [Google Scholar]
  • Hussain M.D, Dudem B., Kutsarov D.I., Silva S.R.P. (2024) Exploring charge regeneration effect in interdigitated array electrodes-based TENGs for a more than 100-fold enhanced power density, Nano Energy, 130, 110–112. [Google Scholar]
  • Zeliha M.A., Zeynep K., Eyup Y. (2023) One material-opposite triboelectrification: molecular engineering regulated triboelectrification on silica surface to enhance TENG efficiency, Molecules (Basel, Switzerland) 28, 15, 56–62. [Google Scholar]
  • He Y., Tian J., Peng W.B., Huang D.Y., Li F.P., He Y.N. (2023) On the contact electrification mechanism in semiconductor semiconductor case by vertical contact-separation triboelectric nanogenerator, Nanotechnology 34, 29, 5401–5411. [Google Scholar]
  • Tiwari M., Mishra D. (2024) Self-powered water-splitting using triboelectric nano-generators for green hydrogen production: Recent advancements and perspective, Int. J. Hydrogen Energy 76, 234–246. [CrossRef] [Google Scholar]
  • Guo X., Shao J.J., Willatzen M., Yang Y., Wang Z.L. (2022) Theoretical model and optimal output of a cylindrical triboelectric nanogenerator, Nano Energy 92, 106, 762–772. [Google Scholar]
  • Fan C.M., Shao J.J., Guo X., Willatzen M., Wang Z.L. (2023) Field-circuit coupling model of triboelectric Nanogenerators, Mater. Today Phys. 35, 101–124. [Google Scholar]
  • Zhang Q., Guo H.Y., Shen F. (2023) A predictive method for impedance estimation of triboelectric nanogenerators based on a gated recurrent unit model, Nano Energy 124, 109, 458. [Google Scholar]
  • Kamaruzaman D., Mustakim M.S.N., Subki A.R.S.A. (2024) Polystyrene waste-ZnO nanocomposite film for energy harvesting via hydrophobic triboelectric nanogenerator: Transforming waste into energy, Mater. Today Sustain. 26, 100, 726. [Google Scholar]
  • Ramenskaya L.M., Kudryakova N.O., Grishina E.P. (2023) Conformation features and interaction of pyrrolidinium-based ionic liquids immobilized with silicon dioxide: Infrared spectroscopy, J. Molecular Liq. 382, 122, 25–35. [Google Scholar]
  • Guilherme L.T., Roithová J. (2022) Unmasking the Iron-Oxo Bond of the [(Ligand)Fe-OIAr]2+/+ Complexes, J. Am. Society Mass Spectrom. 33, 9, 1636–1643. [CrossRef] [PubMed] [Google Scholar]
  • Jeong J., Ko J., Kim J., Lee J. (2024) Asymmetric voltage amplification using a capacitive load energy management circuit in a triboelectric nanogenerator, Discover Nano 19, 1–10. [CrossRef] [Google Scholar]
  • Yan W.J., Liu Y., Cao L.N.Y. (2022) Asymmetric-internal-capacitance-induced charge aggregation for the hot-surface triboelectric nanogenerator, ACS Appl. Mater. Interf. 14, 51, 56827–56835. [CrossRef] [PubMed] [Google Scholar]
  • Liang Y.X., Ma Z.R., Yu S.T. (2022) Preparation and property analysis of solid carbonate-oxide composite materials for an electrolyte used in low-temperature solid oxide fuel cell, Sci. Technol. Energy Trans. 77, 4–12. [Google Scholar]
  • Kumar S, Jha R.K, Sharma P, Goswami A (2024) Design and development of a horizontal contact separated (HCS) test setup for measuring the performance of triboelectric nanogenerator for sustainable energy harvesting application, Rev. Sci. Instrum. 95, 3, 035002–035015. [CrossRef] [PubMed] [Google Scholar]
  • Tilahun D.A., Muneer V., Avik B. (2022) Decentralized control of islanding/grid-connected hybrid DC/AC microgrid using interlinking converters, Sci. Technol. Energy Trans. 77, 22–32. [Google Scholar]
  • Wang J.Q., Bao G.W., Xie S.X., Chen X.W. (2023) A paradigm-shift self-powered optical sensing system enabled by the rotation driven instantaneous discharging triboelectric nanogenerator (RDID-TENG), Nano Energy 115, 108, 732–742. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.