Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 21
Number of page(s) 16
DOI https://doi.org/10.2516/stet/2024092
Published online 29 January 2025
  • Jia Q., Li Y., Yan Z., Chen S. (2022) Reactive power market design for distribution networks with high photovoltaic penetration, IEEE Trans. Smart Grid 14, 2, 1642–1651. [Google Scholar]
  • Luo F., Bu Q., Ye Z. (2024) Dynamic reconstruction strategy of distribution network based on uncertainty modeling and impact analysis of wind and photovoltaic power, IEEE Access 12, 64069–64078. [CrossRef] [Google Scholar]
  • Rakpenthai C., Uatrongjit S., Premrudeepreechacharn S. (2012) State estimation of power system considering network parameter uncertainty based on parametric interval linear systems, IEEE Trans. Power Syst. 27, 1, 305–313. [CrossRef] [Google Scholar]
  • Xu X., Wang H., Yan Z., Lu Z., Kang C., Xie K. (2021) Overview of power system uncertainty and its solutions under energy transition, Autom. Electr. Power Syst. 45, 16, 2–13. [Google Scholar]
  • Yang H., Zhu Y., Liu C. (2022) Data-driven nonlinear power flow regression and analytical sensitivity calculation using MLSSVR, Proc. CSEE 42, 21, 0258–8013. [Google Scholar]
  • Zhai J., Wu X., Zhu S., Yang B., Liu H. (2020) Optimization of integrated energy system considering photovoltaic uncertainty and multi-energy network, IEEE Access 8, 141558–141568. [CrossRef] [Google Scholar]
  • Zeng S.M., Hu X.K., Meng L., Xue S., Zhao Y. (2023) Inverter reliability-constrained volt/var optimization control of distribution network with high-level PV-storage generation, J. Energy Storage 73, 109140. [CrossRef] [Google Scholar]
  • Niknam T., Firouzi B.B., Ostadi A. (2010) A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators, Appl. Energy 87, 6, 1919–1928. [CrossRef] [Google Scholar]
  • Albrechtowicz P., Cisek P. (2022) An impact of the line resistance on the power flow calculations with installed phase-shifting transformer in different voltage levels power systems, Electr. Power Syst. Res. 209, 107970. [CrossRef] [Google Scholar]
  • Mongkoldee K., Kulworawanichpong T. (2018) Current-based Newton-Raphson power flow calculation for AT-fed railway power supply systems, Int. J. Electr. Power Energy Syst. 98, 11–22. [CrossRef] [Google Scholar]
  • Chen Y.H., Yan X.M., Yan X.M. (2024) Two-steps power flow calculation, Electr. Power Syst. Res. 236, 110958. [CrossRef] [Google Scholar]
  • Huang J.W., Du Z.Y., Cai H.W., He J., Yue G., Li G., Zhao H., Chen Y. (2024) Probabilistic load flow calculation and power system security analysis based on improved CGC-CM, Electr. Power Syst. Res. 237, 110995. [CrossRef] [Google Scholar]
  • Kan R.H., Xu Y.C., Li Z.H., Lu M. (2024) Calculation of probabilistic harmonic power flow based on improved three-point estimation method and maximum entropy as distributed generators access to distribution network, Electr. Power Syst. Res. 230, 110197. [CrossRef] [Google Scholar]
  • Liao X.B., Zhang Y.M., Li Z.C., Wei H., Ding H. (2024) Probabilistic interval power flow calculation method for distribution networks considering the correlation of distributed wind power output, Int. J. Electr. Power Energy Syst. 157, 109827. [CrossRef] [Google Scholar]
  • Ye S.F., Huang R.H., Xie J.X., Ou J.J. (2023) A power flow calculation method for multi-voltage level DC power grid considering the control modes and DC/DC converter, IEEE Access 11, 98182–98190. [CrossRef] [Google Scholar]
  • Fan Z.X., Yang Z.F., Yu J., Xie K., Yang G. (2020) Minimize linearization error of power flow model based on optimal selection of variable space, IEEE Trans. Power Syst. 36, 2, 1130–1140. [Google Scholar]
  • Zhou S.Y., Wang M.X., Wang J.H., Yang M., Dong X. (2020) Time-process power flow calculation considering thermal behavior of transmission components, IEEE Trans. Power Syst. 35, 6, 4232–4250. [CrossRef] [Google Scholar]
  • Garces A. (2015) A linear three-phase load flow for power distribution systems, IEEE Trans. Power Syst. 31, 1, 827–828. [Google Scholar]
  • Dong X., Ma Y., Wang Y., Chen Q., Liu Z., Jia X. (2022) An improved power flow calculation method based on linear regression for multi-area networks with information barriers, Int. J. Electr. Power Energy Syst. 142, 108385. [CrossRef] [Google Scholar]
  • Lin H., Shen X., Guo Y., Ding T., Sun H. (2024) A linear distflow model considering line shunts for fast calculation and voltage control of power distribution systems, Appl. Energy 357, 122467. [CrossRef] [Google Scholar]
  • Zeraati M., Sheibani M.R., Jabari F., Heydarian-Forushani E. (2024) A novel state estimation method for distribution networks with low observability based on linear AC optimal power flow model, Electr. Power Syst. Res. 228, 110085. [CrossRef] [Google Scholar]
  • Chew B.S.H., Xu Y., Wu Q. (2018) Voltage balancing for bipolar DC distribution grids: a power flow based binary integer multi-objective optimization approach, IEEE Trans. Power Syst. 34, 1, 28–39. [Google Scholar]
  • Liu Y., Zhang N., Wang Y. (2018) Data-driven power flow linearization: a regression approach, IEEE Trans. Smart Grid 10, 3, 2569–2580. [Google Scholar]
  • Liu K., Wang C., Wang W.Z., Chen Y., Wu H. (2019) Linear power flow calculation of distribution networks with distributed generation, IEEE Access 7, 44686–44695. [CrossRef] [Google Scholar]
  • Liu Y., Wang Y., Zhang N., Lu D., Kang C. (2019) A data-driven approach to linearize power flow equations considering measurement noise, IEEE Trans. Smart Grid 11, 3, 2576–2587. [Google Scholar]
  • Wang Y.S., Wu H., Xu H.L., Li Q., Liu S. (2020) A general fast power flow algorithm for transmission and distribution networks, IEEE Access 8, 23284–23293. [CrossRef] [Google Scholar]
  • Jin D., Chiang H.-D., Li P. (2019) Two-timescale multi-objective coordinated volt/var optimization for active distribution networks, IEEE Trans. Power Syst. 34, 6, 4418–4428. [CrossRef] [Google Scholar]
  • Turitsyn K., Sulc P., Backhaus S., Chertkov M. (2011) Options for control of reactive power by distributed photovoltaic generators, Proc. IEEE 99, 6, 1063–1073. [CrossRef] [Google Scholar]
  • Zhang C., Xu Y. (2020) Hierarchically-coordinated voltage/var control of distribution networks using PV inverters, IEEE Trans. Smart Grid 11, 4, 2942–2953. [CrossRef] [Google Scholar]
  • Zhang B., Gao Y. (2023) Data-driven voltage/var optimization control for active distribution network considering PV inverter reliability, Electr. Power Syst. Res. 224, 109800. [CrossRef] [Google Scholar]
  • Zhang Y., Xu Y., Yang H., Dong Z.Y. (2019) Voltage regulation-oriented co-planning of distributed generation and battery storage in active distribution networks, Int. J. Electr. Power Energy Syst. 105, 79–88. [CrossRef] [Google Scholar]
  • Abadi S.M.N.R., Attarha A., Scott P., Thiébaux S. (2020) Affinely adjustable robust volt/var control for distribution systems with high PV penetration, IEEE Trans. Power Syst. 36, 4, 3238–3247. [Google Scholar]
  • Savasci A., Inaolaji A., Paudyal S. (2022) Two-stage volt-var optimization of distribution grids with smart inverters and legacy devices, IEEE Trans. Ind. Appl. 58, 5, 5711–5723. [CrossRef] [Google Scholar]
  • Aboshady F.M., Pisica I., Zobaa A.F., Taylor G.A., Ceylan O., Ozdemir A. (2023) Reactive power control of PV inverters in active distribution grids with high PV penetration, IEEE Access 11, 81477–81496. [CrossRef] [Google Scholar]
  • Xu R.P., Zhang C., Xu Y., Dong Z., Zhang R. (2021) Multi-objective hierarchically-coordinated volt/var control for active distribution networks with droop-controlled PV inverters, IEEE Trans. Smart Grid 13, 2, 998–1011. [Google Scholar]
  • Nguyen H.T., Choi D.H. (2022) Three-stage inverter-based peak shaving and Volt-VAR control in active distribution networks using online safe deep reinforcement learning, IEEE Trans. Smart Grid 13, 4, 3266–3277. [CrossRef] [Google Scholar]
  • Dutta A., Ganguly S., Kumar C. (2021) Coordinated volt/var control of PV and EV interfaced active distribution networks based on dual-stage model predictive control, IEEE Syst. J. 16, 3, 4291–4300. [Google Scholar]
  • Sun X.Z., Qiu J., Tao Y.C., Ma Y., Zhao J. (2022) A multi-mode data-driven volt/var control strategy with conservation voltage reduction in active distribution networks, IEEE Trans. Sustain. Energy 13, 2, 1073–1085. [CrossRef] [Google Scholar]
  • Li H.X., Mao M.X., Guo K., Hao G., Zhou L. (2021) A decentralized optimization method based two-layer Volt-Var control strategy for the integrated system of centralized PV plant and external power grid, J. Clean. Prod. 278, 123625. [CrossRef] [Google Scholar]
  • Gong C., Cheng Z.Y., Sou W.K., Lam C.S., Chow M.Y. (2023) Collaborative distributed optimal control of pure and hybrid active power filters in active distribution network, IEEE Trans. Power Deliv. 38, 4, 2326–2337. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Hakimi S.M., Bahramara S. (2019) Tri-objective optimal scheduling of smart energy hub system with schedulable loads, J. Clean. Prod. 236, 117584. [CrossRef] [Google Scholar]
  • Chamandoust H., Derakhshan G., Bahramara S. (2020) Multi-objective performance of smart hybrid energy system with Multi-optimal participation of customers in day-ahead energy market, Energy Build. 216, 109964. [CrossRef] [Google Scholar]
  • Chamandoust H. (2022) Optimal hybrid participation of customers in a smart micro-grid based on day-ahead electrical market, Artif. Intell. Rev. 55, 7, 5891–5915. [CrossRef] [Google Scholar]
  • Baran M.E., Wu F.F. (1989) Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Trans. Power Deliv. 4, 2, 1401–1407. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.