Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Article Number 22
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2024010
Published online 26 March 2024
  • Pörtner H., Roberts D., Tignor M., Poloczanska E., Mintenbeck K., Alegria A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (2022) IPCC 2022: Climate change 2022: Impacts, adaptation, and vulnerability, contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, Cambridge University Press. [Google Scholar]
  • Lombard J.M., Azaroual M., Pironon J., Broseta D., Egermann P., Munier G., Mouronval G. (2010) CO2 injectivity in geological storages: An overview of program and results of the GeoCarbone-Injectivity project, Oil Gas Sci. Technol. 65, 4, 533–539. [CrossRef] [Google Scholar]
  • Siqueira T.A., Iglesias R.S., Ketzer J.M. (2017) Carbon dioxide injection in carbonate reservoirs – a review of CO2-water-rock interaction studies, Greenh. Gases: Sci. Technol. 7, 5, 802–816. [CrossRef] [Google Scholar]
  • André L., Audigane P., Azaroual M., Menjoz A. (2007) Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energy Convers. Manag. 48, 6, 1782–1797. [CrossRef] [Google Scholar]
  • Lønøy A. (2006) Making sense of carbonate pore systems, AAPG Bull. 90, 9, 1381–1405. [CrossRef] [Google Scholar]
  • Bauer D., Youssef S., Han M., Bekri S., Rosenberg E., Fleury M., Vizika O. (2011) From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: Influence of percolation on the electrical transport properties, Phys. Rev. E 84, 1, 011133. [CrossRef] [PubMed] [Google Scholar]
  • Bazin B. (2001) From matrix acidizing to acid fracturing: a laboratory evaluation of acid/rock interactions, SPE Prod. Facil. 16, 1, 22–29. [Google Scholar]
  • Golfier F., Zarcone C., Bazin B., Lenormand R., Lasseux D., Quintard M. (2002) On the ability of a darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J. Fluid Mech. 457, 213–254. [CrossRef] [Google Scholar]
  • Vialle S., Contraires S., Zinzsner B., Clavaud J.-B., Mahiouz K., Zuddas P., Zamora M. (2014) Percolation of CO2-rich fluids in a limestone sample: Evolution of hydraulic, electrical, chemical, and structural properties, J. Geophys. Res. Solid Earth 119, 4, 2828–2847. [CrossRef] [Google Scholar]
  • Menke H.P., Bijeljic B., Andrew M.G., Blunt M.J. (2015) Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions, Environ. Sci. Technol. 49, 7, 4407–4414. [Google Scholar]
  • Vialle S., Dvorkin J., Mavko G. (2013) Implications of pore microgeometry heterogeneity for the movement and chemical reactivity of CO2 in carbonates, Geophysics 78, 5, L69–L86. [CrossRef] [Google Scholar]
  • Yang Y., Li Y., Yao J., Iglauer S., Luquot L., Zhang K., Sun H., Zhang L., Song W., Wang Z. (2020) Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure, Water Resour. Res. 56, 4, e2019WR026112. [CrossRef] [Google Scholar]
  • Peter A., Yang D., Eshiet K.I.I.I., Sheng Y. (2022) A review of the studies on CO2–brine–rock interaction in geological storage process, Geosciences 12, 4, 168. [CrossRef] [Google Scholar]
  • Brinkman H.C. (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbul. Combust. 1, 1, 27. [CrossRef] [Google Scholar]
  • Brinkman H.C. (1949) On the permeability of media consisting of closely packed porous particles, Flow Turbul. Combust. 1, 1, 81. [CrossRef] [Google Scholar]
  • Bemer E., Nguyen M.T., Dautriat J., Adelinet M., Fleury M., Youssef S. (2016) Impact of chemical alteration on the poromechanical properties of carbonate rocks, Geophys. Prospect. 64, 4-Advances in Rock Physics, 810–827. [CrossRef] [Google Scholar]
  • Ferri G., Humbert S., Digne M., Schweitzer J.-M., Moreaud M. (2021) Simulation of large aggregate particles systems with a new morphological model, Image Anal. Stereol. 40, 71–84. [CrossRef] [MathSciNet] [Google Scholar]
  • Serra J. (1988) Image analysis and mathematical morphology, part II: Theoretical advances. Academic Press [Google Scholar]
  • “plugim!” (2018) An open access and customizable software for signal and image processing. https://www.plugim.fr. [Google Scholar]
  • Ginzburg I. (2008) Consistent Lattice Boltzmann schemes for the brinkman model of porous flow and infinite Chapman-Enskog expansion, Phys. Rev. E 77, (6), 066704. [CrossRef] [PubMed] [Google Scholar]
  • Ginzburg I. (2007) Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and advection-diffusion equations, J. Stat. Phys. 126, 157–206. [CrossRef] [MathSciNet] [Google Scholar]
  • Ginzburg I., d’Humières D., Kuzmin A. (2010) Optimal stability of advection-diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys. 139, 6, 1090–1143. [CrossRef] [MathSciNet] [Google Scholar]
  • Ginzburg I., Silva G., Talon L. (2015) Analysis and improvement of Brinkman lattice Boltzmann schemes: Bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media, Phys. Rev. E 91, 2, 023307. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Silva G., Ginzburg I. (2016) Stokes–Brinkman–Darcy solutions of bimodal porous flow across periodic array of permeable cylindrical inclusions: Cell model, lubrication theory and LBM/FEM numerical simulations, Transp. Porous Media 111, 3, 795–825. [CrossRef] [MathSciNet] [Google Scholar]
  • Barthélémy J.-F. (2009) Effective permeability of media with a dense network of long and micro fractures, Transp. Porous Media 76, 1, 153–178. [CrossRef] [MathSciNet] [Google Scholar]
  • Fokker P.A. (2001) General anisotropic effective medium theory for the effective permeability of heterogeneous reservoirs, Transp. Porous Media 44, 2, 205–218. [CrossRef] [MathSciNet] [Google Scholar]
  • Dormieux L., Kondo D. (2004) Approche micromécanique du couplage perméabilité–endommagement, CR Mécanique 332, 2, 135–140. [CrossRef] [Google Scholar]
  • Stauffer D., Aharony A. (1992) Introduction to percolation theory, Taylor and Francis, London. [Google Scholar]
  • Masihi M., Gago P.A., King P.R. (2016) Estimation of the effective permeability of heterogeneous porous media by using percolation concepts, Transp. Porous Media 114, 169–199. [Google Scholar]
  • Talon L., Bauer D., Gland N., Youssef S., Auradou H., Ginzburg I. (2012) Assessment of the two relaxation time Lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resour. Res. 48, 4. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.