Numéro
Sci. Tech. Energ. Transition
Volume 79, 2024
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Numéro d'article 22
Nombre de pages 11
DOI https://doi.org/10.2516/stet/2024010
Publié en ligne 26 mars 2024
  • Pörtner H., Roberts D., Tignor M., Poloczanska E., Mintenbeck K., Alegria A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (2022) IPCC 2022: Climate change 2022: Impacts, adaptation, and vulnerability, contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, Cambridge University Press. [Google Scholar]
  • Lombard J.M., Azaroual M., Pironon J., Broseta D., Egermann P., Munier G., Mouronval G. (2010) CO2 injectivity in geological storages: An overview of program and results of the GeoCarbone-Injectivity project, Oil Gas Sci. Technol. 65, 4, 533–539. [CrossRef] [Google Scholar]
  • Siqueira T.A., Iglesias R.S., Ketzer J.M. (2017) Carbon dioxide injection in carbonate reservoirs – a review of CO2-water-rock interaction studies, Greenh. Gases: Sci. Technol. 7, 5, 802–816. [CrossRef] [Google Scholar]
  • André L., Audigane P., Azaroual M., Menjoz A. (2007) Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energy Convers. Manag. 48, 6, 1782–1797. [CrossRef] [Google Scholar]
  • Lønøy A. (2006) Making sense of carbonate pore systems, AAPG Bull. 90, 9, 1381–1405. [CrossRef] [Google Scholar]
  • Bauer D., Youssef S., Han M., Bekri S., Rosenberg E., Fleury M., Vizika O. (2011) From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: Influence of percolation on the electrical transport properties, Phys. Rev. E 84, 1, 011133. [CrossRef] [PubMed] [Google Scholar]
  • Bazin B. (2001) From matrix acidizing to acid fracturing: a laboratory evaluation of acid/rock interactions, SPE Prod. Facil. 16, 1, 22–29. [Google Scholar]
  • Golfier F., Zarcone C., Bazin B., Lenormand R., Lasseux D., Quintard M. (2002) On the ability of a darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J. Fluid Mech. 457, 213–254. [CrossRef] [Google Scholar]
  • Vialle S., Contraires S., Zinzsner B., Clavaud J.-B., Mahiouz K., Zuddas P., Zamora M. (2014) Percolation of CO2-rich fluids in a limestone sample: Evolution of hydraulic, electrical, chemical, and structural properties, J. Geophys. Res. Solid Earth 119, 4, 2828–2847. [CrossRef] [Google Scholar]
  • Menke H.P., Bijeljic B., Andrew M.G., Blunt M.J. (2015) Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions, Environ. Sci. Technol. 49, 7, 4407–4414. [Google Scholar]
  • Vialle S., Dvorkin J., Mavko G. (2013) Implications of pore microgeometry heterogeneity for the movement and chemical reactivity of CO2 in carbonates, Geophysics 78, 5, L69–L86. [CrossRef] [Google Scholar]
  • Yang Y., Li Y., Yao J., Iglauer S., Luquot L., Zhang K., Sun H., Zhang L., Song W., Wang Z. (2020) Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure, Water Resour. Res. 56, 4, e2019WR026112. [CrossRef] [Google Scholar]
  • Peter A., Yang D., Eshiet K.I.I.I., Sheng Y. (2022) A review of the studies on CO2–brine–rock interaction in geological storage process, Geosciences 12, 4, 168. [CrossRef] [Google Scholar]
  • Brinkman H.C. (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow, Turbul. Combust. 1, 1, 27. [CrossRef] [Google Scholar]
  • Brinkman H.C. (1949) On the permeability of media consisting of closely packed porous particles, Flow Turbul. Combust. 1, 1, 81. [CrossRef] [Google Scholar]
  • Bemer E., Nguyen M.T., Dautriat J., Adelinet M., Fleury M., Youssef S. (2016) Impact of chemical alteration on the poromechanical properties of carbonate rocks, Geophys. Prospect. 64, 4-Advances in Rock Physics, 810–827. [CrossRef] [Google Scholar]
  • Ferri G., Humbert S., Digne M., Schweitzer J.-M., Moreaud M. (2021) Simulation of large aggregate particles systems with a new morphological model, Image Anal. Stereol. 40, 71–84. [CrossRef] [MathSciNet] [Google Scholar]
  • Serra J. (1988) Image analysis and mathematical morphology, part II: Theoretical advances. Academic Press [Google Scholar]
  • “plugim!” (2018) An open access and customizable software for signal and image processing. https://www.plugim.fr. [Google Scholar]
  • Ginzburg I. (2008) Consistent Lattice Boltzmann schemes for the brinkman model of porous flow and infinite Chapman-Enskog expansion, Phys. Rev. E 77, (6), 066704. [CrossRef] [PubMed] [Google Scholar]
  • Ginzburg I. (2007) Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and advection-diffusion equations, J. Stat. Phys. 126, 157–206. [CrossRef] [MathSciNet] [Google Scholar]
  • Ginzburg I., d’Humières D., Kuzmin A. (2010) Optimal stability of advection-diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium, J. Stat. Phys. 139, 6, 1090–1143. [CrossRef] [MathSciNet] [Google Scholar]
  • Ginzburg I., Silva G., Talon L. (2015) Analysis and improvement of Brinkman lattice Boltzmann schemes: Bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media, Phys. Rev. E 91, 2, 023307. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Silva G., Ginzburg I. (2016) Stokes–Brinkman–Darcy solutions of bimodal porous flow across periodic array of permeable cylindrical inclusions: Cell model, lubrication theory and LBM/FEM numerical simulations, Transp. Porous Media 111, 3, 795–825. [CrossRef] [MathSciNet] [Google Scholar]
  • Barthélémy J.-F. (2009) Effective permeability of media with a dense network of long and micro fractures, Transp. Porous Media 76, 1, 153–178. [CrossRef] [MathSciNet] [Google Scholar]
  • Fokker P.A. (2001) General anisotropic effective medium theory for the effective permeability of heterogeneous reservoirs, Transp. Porous Media 44, 2, 205–218. [CrossRef] [MathSciNet] [Google Scholar]
  • Dormieux L., Kondo D. (2004) Approche micromécanique du couplage perméabilité–endommagement, CR Mécanique 332, 2, 135–140. [CrossRef] [Google Scholar]
  • Stauffer D., Aharony A. (1992) Introduction to percolation theory, Taylor and Francis, London. [Google Scholar]
  • Masihi M., Gago P.A., King P.R. (2016) Estimation of the effective permeability of heterogeneous porous media by using percolation concepts, Transp. Porous Media 114, 169–199. [Google Scholar]
  • Talon L., Bauer D., Gland N., Youssef S., Auradou H., Ginzburg I. (2012) Assessment of the two relaxation time Lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resour. Res. 48, 4. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.