Sci. Tech. Energ. Transition
Volume 79, 2024
Power Components For Electric Vehicles
Article Number 23
Number of page(s) 17
Published online 01 April 2024
  • Ali M.U., Zafar A., Nengro S.H., Hussain S., Junaid Alvi M., Kim H.-J. (2019) Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation, Energies 12, 3, 446. [Google Scholar]
  • Previati G., Mastinu G., Gobbi M. (2022) Thermal management of electrified vehicles-A review, Energies 15, 4, 1326. [Google Scholar]
  • Zhang X., Li Z., Luo L., Fan Y., Du Z. (2022) A review on thermal management of batteries for electric vehicles, Energy 238, 121652. [Google Scholar]
  • Ghaeminezhad N., Wang Z., Ouyang Q. (2023) A review on lithium-ion battery thermal management system techniques: A control-oriented analysis, Appl. Therm. Eng. 219, 119497. [Google Scholar]
  • Wang T., Tan S., Guo C., Su H., Guo C., Jiang Y. (2021) Experimental study on U-shape flat thermosyphon for thermal management of power battery, J. Mech. Sci. Technol. 35, 9, 4193–4200. [Google Scholar]
  • Nasir F.M., Abdullah M.Z., Isamail M.A. (2023) Effect of heat pipe’s configuration in managing the temperature of EV battery, CFD Lett. 15, 3, 22–34. [Google Scholar]
  • Zhou Z., Lv Y., Qu J., Sun Q., Grachev D. (2021) Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling, Appl. Therm. Eng. 196, 117300. [Google Scholar]
  • Gou J., Liu W. (2019) Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle, Appl. Therm. Eng. 152, 362–369. [Google Scholar]
  • Liu W., Jia Z., Luo Y., Xie W., Deng T. (2019) Experimental investigation on thermal management of cylindrical Li-ion battery pack based on vapor chamber combined with fins, Appl. Therm. Eng. 132, 114272. [Google Scholar]
  • Hong S., Zhang X., Wang S., Zhang Z. (2015) Experimental investigation on the characters of ultra-thin loop heat pipe applied in BTMS, Energy Procedia 75, 3192–3200. [Google Scholar]
  • Putra N., Ariantara B., Pamungkas R.A. (2016) Experimental investigation on the performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application, Appl. Therm. Eng. 99, 784–789. [Google Scholar]
  • Ariantara B., Putra N., Supriadi S. (2018) Battery thermal management system using loop heat pipe with LTP copper capillary wick, IOP Conf. Ser.: Earth Environ. Sci., 105, 012045. [Google Scholar]
  • Bernagozzi M., Charmer S., Georgoulasa A., Malavasi I., Michè N., Marengo M. (2018) Lumped parameter network simulation of a Loop Heat Pipe for energy management systems in fully electric vehicles, Appl. Therm. Eng. 141, 617–629. [Google Scholar]
  • Bernagozzi M., Miché N., Georgoulas A., Rouaud C., Marengo M. (2021) Performance of an environmentally friendly alternative fluid in a loop heat pipe-based battery thermal management system, Energies 14, 22, 7738. [Google Scholar]
  • Singh R., Nguyen T. (2022) Loop heat pipes for thermal management of electric vehicles, J. Therm. Sci. Eng. Appl. 14, 6, 061010. [Google Scholar]
  • Hashimoto M., Akizuki Y., Sato K., Ueno A., Nagano H. (2022) Proposal, transient model, and experimental verification of loop heat pipe as heating device for electric-vehicle batteries, Appl. Therm. Eng. 211, 118432. [Google Scholar]
  • Singh R., Lappa G., Velardo J., Long P.T., Mochizuki M., Akbarzadeh A., Date A., Mausolf K., Busse K. (2021) Battery cooling options in electric vehicle with heat pipes, Front. Heat Mass Transf. 16, 2. [Google Scholar]
  • Gabsi I., Maalej S., Zaghdoudi M.C. (2018) Thermal performance modeling of loop heat pipes with the flat evaporator for electronic cooling, J. Microelectron. Reliab. 84, 37–47. [Google Scholar]
  • Gabsi I., Maalej S., Zaghdoudi M.C. (2021) Modeling of loop heat pipe thermal performance, J. Adv. Res. Fluid Mech. Therm. Sci. 8, 1, 41–72. [Google Scholar]
  • Patel J., Soni A., Barai D., Bhanvase B. (2023) A minireview on nanofluids for automotive applications: Current status and future perspectives, Appl. Therm. Eng. 219, Part A, 119428. [Google Scholar]
  • Can A., Selimefendigil F., Öztop H.F. (2022) A review on soft computing and nanofluid applications for battery thermal management, J. Energy Storage 53, 105214. [Google Scholar]
  • Gunnasegaran P., Abdullah M.Z., Shuaib N.H. (2013) Influence of nanofluid on heat transfer in a loop heat pipe, Int. Commun. Heat Mass Transfer 47, 82–91. [Google Scholar]
  • Gunnasegaran P., Abdullah M.Z., Yussuf M.Z. (2014) Effect of Al2O3–H2O nanofluid concentration on heat transfer in a loop heat pipe, Proc. Mater. Sci. 5, 137–146. [Google Scholar]
  • Putra N., Saleh R., Septiadi W.N., Okta A., Hamid Z. (2014) Thermal performance of biomaterial wick loop heat pipes with water-base Al2O3 nanofluids, Int. J. Therm. Sci. 70, 128–136. [Google Scholar]
  • Gunnasegaran P., Abdullah M.Z., Yusoff M.Z., Abdullah S.F. (2015) Optimization of SiO2 nanoparticle mass concentration and heat input on a loop heat pipe, Case Stud. Therm. Eng. 6, 238–250. [Google Scholar]
  • Wan Z., Deng J., Li B., Xu Y., Wang X., Tang Y. (2015) Thermal performance of a miniature loop heat pipe using water-copper nanofluid, Appl. Therm. Eng. 78, 712–719. [Google Scholar]
  • Tharayil T., Asirvatham L.G., Ravindran V., Wongwises S. (2016) Thermal performance of miniature loop heat pipe with graphene-water nanofluid, Int. J. Heat Mass Transf. 93, 957–968. [Google Scholar]
  • Gunnasegaran P., Abdullah M.Z., Yusoff M.Z. (2017) Heat transfer in a loop heat pipe using Fe2NiO4-H2O nanofluid, MATEC Web Conf. 109, 05001. [Google Scholar]
  • Gunnasegaran P., Abdullah M.Z., Yusoff M.Z., Kanna R. (2018) Heat transfer in a loop heat pipe using diamond-H2O nanofluid, Heat Transf. Eng. 39, 13–14, 1117–1131. [Google Scholar]
  • Akshay J., Aswin J.J., Jibin J., Rajesh B. (2018) Enhancement of the thermal performance of a loop heat pipe using alumina-water nanofluid: An experimental investigation, IOP Conf. Ser.: Mater. Sci. Eng. Conf. 396, 7p. [Google Scholar]
  • Wang X.-W., Wan Z.-P., Tang Y. (2018) Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper, Phys. Fluids 30, 027102. [Google Scholar]
  • Stephen E.N., Asirvatham L.G., Kandasamy R., Solomon B., Kondru G.S. (2019) Heat transfer performance of a compact loop heat pipe with alumina and silver nanofluid, J. Therm. Anal. Calorim. 136, 211–222. [Google Scholar]
  • Bin Harun M.A., Gunnasegaran P., Che Sidik N.A., Beriache M., Ghaderian J. (2021) Experimental investigation and optimization of loop heat pipe performance with nanofluids, J. Therm. Anal. Calorim. 144, 1435–1449. [Google Scholar]
  • Riehl R.R., Murshed S.M.S. (2022) Performance evaluation of nanofluids in loop heat pipes and oscillating heat pipes, Int. J. Thermofluids 14, 100147. [Google Scholar]
  • Veeramachaneni S., Pisipaty S.K., Vedula D.R., Brusly Salomon A., Harsha V.S. (2022) Effect of copper-graphene hybrid nanoplatelets in a miniature loop heat pipe, J. Therm. Anal. Calorim. 147, 5985–5999. [Google Scholar]
  • Jose J., Baby R. (2019) Enhancement of the thermal performance of a loop heat pipe using silica-water nanofluid, J. Phys. Conf. Ser. 1355, 1–6, 012010. [Google Scholar]
  • Gabsi I., Saad I., Maalej S., Zaghdoudi M.C. (2022) Modeling of thermal performance of a nanofluid-filled loop heat pipe for battery thermal management in electric vehicles, in 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), IEEE, Tunisia, pp. 1–6. [Google Scholar]
  • Maxwell J.C. (1881) A treatise on electricity and magnetism, Vol. 1, 2nd edn., Clarendon Press, 13 Oxford, UK. [Google Scholar]
  • Einstein A. (1906) Eine neue bestimmung der moleküldimensionen, Ann. Phys. 19, 289–306. [Google Scholar]
  • Krieger I.M., Dougherty T.J. (1959) A mechanism for non-Newtonian flow in the suspension of rigid spheres, J. Trans. Soc. Rheol. 3, 137–152. [Google Scholar]
  • Pak B., Cho Y.I. (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer 11, 51–170. [Google Scholar]
  • Xuan Y.M., Roetzel W. (2000) Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43, 19, 3701–3707. [Google Scholar]
  • Mehregan M., Moghiman M. (2014) Propose a correlation to approximate nanofluids enthalpy of vaporization – a numerical study, Int. J. Mater. Mech. Manuf. 2, 1, 73–76. [Google Scholar]
  • Venkatachalapathy S., Kumaresan G., Suresh S. (2015) Performance analysis of cylindrical heat pipe using nanofluids – an experimental study, Int. J. Multiph. Flow 72, 188–197. [Google Scholar]
  • Sefiane K., Bennacer R. (2009) Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates, Adv. Colloid Interf. Sci. 147–148, 263–271. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.