Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Synthesis and characterisation of porous materials for clean energy applications
Article Number 21
Number of page(s) 13
DOI https://doi.org/10.2516/stet/2024013
Published online 26 March 2024
  • Kusoglu A., Weber A.Z. (2017) New Insights into perfluorinated sulfonic-acid lonomers, Chem. Rev. 117, 987–1104. [Google Scholar]
  • Cornet N., Diat O., Gebel G., Jousse F., Marsacq D., Mercier R., Pineri M. (2000) Sulfonated polyimide membranes: a new type of ion-conducting membrane for electrochemical applications, J. New Mater. Electrochem. Syst. 3, 33–42. [Google Scholar]
  • Sone Y., Ekdunge P., Simonsson D. (1996) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method, J. Electrochem. Soc. 143, 1254–1259. [Google Scholar]
  • Kreuer K.D., Paddison S.J., Spohr E., Schuster M. (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology, Chem. Rev. 104, 4637–4678. [Google Scholar]
  • Rubatat L., Rollet A.L., Gebel G., Diat O. (2002) Evidence of elongated polymeric aggregates in Nafion, Macromolecules 35, 4050–4055. [Google Scholar]
  • Rubatat L. (2003) PhD thesis, Université Joseph Fourier, Grenoble I. [Google Scholar]
  • Perrin J.C., Lyonnard S., Volino F. (2007) Quasielastic neutron scattering study of water dynamics in hydrated Nafion membranes, J. Phys. Chem. C 111, 3393–3404. [Google Scholar]
  • Zhao Q.A., Majsztrik P., Benziger J. (2011) Diffusion and interfacial transport of water in Nafion, J. Phys. Chem. B 115, 2717–2727. [Google Scholar]
  • Perrin J.C., Lyonnard S., Guillermo A., Levitz P. (2006) Water dynamics in ionomer membranes by field-cycling NMR relaxometry, J. Phys. Chem. B 110, 5439–5444. [Google Scholar]
  • Perrin J.C., Lyonnard S., Guillermo A., Levitz P. (2006) Water dynamics in lonomer membranes by field-cycling NMR relaxometry, Fuel Cells 6, 5–9. [Google Scholar]
  • Perrin J.C., Lyonnard S., Guillermo A., Levitz P. (2007) Water dynamics in ionomer membranes by field-cycling NMR relaxometry, Magn. Reson. Imag. 25, 501–504. [Google Scholar]
  • Hahn E.L. (1950) Spin echoes, Phys. Rev. 80, 580–594. [Google Scholar]
  • Stejskal E.O., Tanner J.E. (1965) Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, J. Chem. Phys. 42, 288–292. [Google Scholar]
  • Price W.S. (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1, Basic theory. Concepts Magn. Reson. 9, 299–335. [Google Scholar]
  • Valiullin R. (2017) Diffusion NMR of confined systems, Royal Society of Chemistry. [Google Scholar]
  • Suarez S., Greenbaum S. (2010) Nuclear magnetic resonance of polymer electrolyte membrane fuel cells, Chem. Rec. 10, 377–393. [Google Scholar]
  • Yan L.M., Hu Y.D., Zhang X.M., Yue B.H. (2016) Applications of NMR techniques in the development and operation of proton exchange membrane fuel cells, Ann. Rep. NMR Spectrosc. 88, 88, 149–213. [Google Scholar]
  • Zhang Z., Balcom B. (2017) Magnetic resonance imaging, in: H. Wang, X.Z. Yuan, H. Li (eds), PEM fuel cell diagnostic tools, CRC Press/Taylor & Francis group, Boca-Raton, FL, pp. 229–254. [Google Scholar]
  • J.-C. Perrin (2006) PhD thesis. Université Joseph Fourier, Grenoble I. [Google Scholar]
  • Bunce N.J., Sondheimer S.J., Fyfe C.A. (1986) Proton NMR method for the quantitative determination of the water content of the polymeric perfluorosulfonic acid Nafion-H, Macromolecules 19, 333–339. [Google Scholar]
  • Wakai C., Shimoaka T., Hasegawa T. (2013) Analysis of the hydration process and rotational dynamics of water in a Nafion membrane studied by H-1 NMR spectroscopy, Anal. Chem. 85, 7581–7587. [Google Scholar]
  • Maldonado L., Perrin J.C., Dillet J., Lottin O. (2012) Characterization of polymer electrolyte Nafion membranes: Influence of temperature, heat treatment and drying protocol on sorption and transport properties, J. Membr. Sci. 389, 43–56. [Google Scholar]
  • Bloembergen N., Purcell E.M., Pound R.V. (1948) Relaxation effects in Nuclear Magnetic Resonance Absorption, Phys. Rev. 73, 679–712. [Google Scholar]
  • MacMillan B., Sharp A.R., Armstrong R.L. (1999) An nmr investigation of the dynamical characteristics of water absorbed in Nafion, Polymer 40, 2471–2480. [Google Scholar]
  • MacMillan B., Sharp A.R., Armstrong R.L. (1999) N.m.r. relaxation in Nafion – The low temperature regime, Polymer 40, 2481–2485. [Google Scholar]
  • Guillermo A., Gebel G., Mendil-Jakani H., Pinton E. (2009) NMR and Pulsed Field Gradient NMR Approach of Water Sorption Properties in Nafion at Low Temperature, J. Phys. Chem. B 113, 6710–6717. [Google Scholar]
  • Wakai C., Shimoaka T., Hasegawa T. (2015) H-1 NMR Analysis of Water Freezing in Nanospace Involved in a Nafion Membrane, J. Phys. Chem. B 119, 8048–8053. [Google Scholar]
  • Kimmich R. (1997) NMR tomography diffusometry relaxometry, Springer, Berlin Heidelberg. [Google Scholar]
  • Korb J.P., Xu S., Jonas J. (1993) Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses, J. Chem. Phys. 98, 2411–2422. [Google Scholar]
  • Holz M., Heil S.R., Sacco A. (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate H-1 NMR PFG measurements, Phys. Chem. Chem. Phys. 2, 4740–4742. [Google Scholar]
  • Zawodzinski T.A. Jr, Springer T.E., Davey J., Jestel R., Lopez C., Valerio J., Gottesfeld S. (1993) Comparative study of water uptake by and transport through ionomeric fuel cell membranes, J. Electrochem. Soc. 140, 1981–1985. [Google Scholar]
  • Kreuer K.D. (1997) On the development of proton conducting materials for technological applications, Solid State Ionics 97, 1–15. [Google Scholar]
  • Privalov A.F., Sinitsyn V.V., Vogel M. (2023) Transport mechanism in Nafion revealed by detailed comparison of 1H and 17O nuclear magnetic resonance diffusion coefficients, J. Phys. Chem. Lett. 14, 9335–9340. [Google Scholar]
  • Gong X., Bandis A., Tao A., Meresi G., Wang Y., Inglefield P.T., Jones A.A., Wen W.-Y. (2001) Self-diffusion of water, ethanol and decafluropentane in perfluorosulfonate ionomer by pulse field gradient NMR, Polymer 42, 6485–6492. [Google Scholar]
  • Zaton M., Roziere J., Jones D.J. (2017) Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review, Sustain. Energy Fuels 1, 409–438. [Google Scholar]
  • Dubau L., Castanheira L., Maillard F., Chatenet M., Lottin O., Maranzana G., Dillet J., Lamibrac A., Perrin J.-C., Moukheiber E., A. ElKaddour (2014) A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies, Wiley Interdiscip. Rev. Energy Environ. 3, 540–560. [Google Scholar]
  • Robert M., El Kaddouri A., Perrin J.C., Leclerc S., Lottin O. (2018) Towards a NMR-Based Method for Characterizing the Degradation of Nafion XL Membranes for PEMFC, J. Electrochem. Soc. 165, F3209–F3216. [Google Scholar]
  • Dubau L., Castanheira L., Chatenet M., Maillard F., Dillet J., Maranzana G., Abbou S., Lottin O., De Moor G., El Kaddouri A., Bas C., Flandin L., Rossinot E., Caqué N. (2014) Carbon corrosion induced by membrane failure: The weak link of PEMFC long-term performance, Int. J. Hydrog. Energy 39, 21902–21914. [Google Scholar]
  • De Moor G., Bas C., Charvin N., Dillet J., Maranzana G., Lottin O., Caqué N., Rossinot E., Flandin L. (2016) Perfluorosulfonic acid membrane degradation in the hydrogen inlet region: A macroscopic approach, Int. J. Hydrog. Energy 41, 483–496. [Google Scholar]
  • Han J.H., Lee K.W., Lee C.E. (2017) H-1 nuclear magnetic resonance study of low-temperature water dynamics in a water-soaked perfluorosulfonic acid ionomer Nafion film, Solid State Commun. 250, 28–30. [Google Scholar]
  • Panchenko A., Dilger H., Kerres J., Hein M., Ullrich A., Kazc T., Roduner E. (2004) In-situ spin trap electron paramagnetic resonance study of fuel cell processes, Phys. Chem. Chem. Phys. 6, 2891–2894. [Google Scholar]
  • Lin L., Danilczuk M., Schlick S. (2013) Electron spin resonance study of chemical reactions and crossover processes in a fuel cell: Effect of membrane thickness, J. Power Sources 233, 98–103. [Google Scholar]
  • Pozio A., Silva R.F., De Francesco M., Giorgi L. (2003) Nafion degradation in PEFCs from end plate iron contamination, Electrochimica Acta 48, 1543–1549. [Google Scholar]
  • Mittal V.O., Kunz H.R., Fenton J.M. (2007) Membrane degradation mechanisms in PEMFCs, J. Electrochem. Soc. 154, B652–B656. [Google Scholar]
  • Ghassemzadeh L., Kreuer K.D., Maier J., Muller K. (2010) Chemical Degradation of Nation Membranes under Mimic Fuel Cell Conditions as Investigated by Solid-State NMR Spectroscopy, J. Phys. Chem. C 114, 14635–14645. [Google Scholar]
  • Bedet J., Maranzana G., Leclerc S., Lottin O., Moyne C., Stemmelen D., Mutzenhardt P., Canet D. (2008) Magnetic resonance imaging of water distribution and production in a 6 cm2 PEMFC under operation, Int. J. Hydrog. Energy 33, 3146–3149. [Google Scholar]
  • Tsushima S., Teranishi K., Hirai S. (2004) Magnetic resonance imaging of the water distribution within a polymer electrolyte membrane in fuel cells, Electrochemical and Solid State Letters 7, A269–A272. [Google Scholar]
  • Minard K.R., Viswanathan V.V., Majors P.D., Wang L.Q., Rieke P.C. (2006) Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation, J. Power Sources 161, 856–863. [Google Scholar]
  • Wang M.T., Feindel K.W., Bergens S.H., Wasylishen R.E. (2010) In situ quantification of the in-plane water content in the Nafion (R) membrane of an operating polymer-electrolyte membrane fuel cell using H-1 micro-magnetic resonance imaging experiments, J. Power Sources 195, 7316–7322. [Google Scholar]
  • Feindel K.W., Bergens S.H., Wasylishen R.E. (2007) Use of hydrogen-deuterium exchange for contrast in (1)H NMR microscopy investigations of an operating PEM fuel cell, J. Power Sources 173, 86–95. [Google Scholar]
  • Dunbar Z.W., Masel R.I. (2008) Magnetic resonance imaging as an in-situ diagnostic method to characterize water flooding, in: T. Fuller, M. Inaba, H. Nakagawa, K. Shinohara, S. Mitsushima, H.A. Gasteiger, V. Raman, S. Cleghorn, P. Strasser, T. Zawodzinski (eds), Proton exchange membrane fuel cells 8, Pts 1 and 2, vol. 16, The Electrochemical Society, Pennington, NJ, pp. 1001–1008. [Google Scholar]
  • Zhang Z., Martin J., Wu J., Wang H., Promislow K., Balcom B.J. (2008) Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell, J. Magn. Reson. 193, 259–266. [Google Scholar]
  • Zhang Z., Marble A.E., Macgregor R.P., Martin J., Wang H., Balcom B.J. (2011) Zero-mode TEM parallel-plate resonator for high-resolution thin film magnetic resonance imaging, Can. J. Chem. – Rev. Can. Chim. 89, 745–753. [Google Scholar]
  • Meadowcroft M.D., Zhang S., Liu W., Park B.S., Connor J.R., Collins C.M., Smith M.B., Yang Q.X. (2007) Direct magnetic resonance imaging of histological tissue samples at 3.0T, Magn. Reson. Med. 57, 835–841. [Google Scholar]
  • Klein M., Perrin J.-C., Leclerc S., Guendouz L., Dillet J., Lottin O. (2013) Anisotropy of water self-diffusion in a Nafion membrane under traction, Macromolecules 46, 9259–9269. [Google Scholar]
  • Perrin J.C., Klein M., Leclerc S., Guendouz L., Dillet J., Lottin O. (2013) NMR investigation of water diffusion in a nafionmembrane under traction, in: H.A. Gasteiger, A. Weber, K. Shinohara, H. Uchida, S. Mitsushima, T.J. Schmidt, S.R. Narayanan, V. Ramani, T. Fuller, M. Edmundson, P. Strasser, R. Mantz, J. Fenton, F.N. Buchi, D.C. Hansen, D.L. Jones, C. Coutanceau, K. SwiderLyons, K.A. Perry (eds), Polymer electrolyte fuel cells 13, vol. 58, The Electrochemical Society, Pennington, NJ, pp. 781–788. [Google Scholar]
  • El Kaddouri A., Perrin J.-C., Colinart T., Moyne C., Leclerc S., Guendouz L., Lottin O. (2016) Impact of a compressive stress on water sorption and diffusion in lonomer membranes for fuel cells. A H-1 NMR study in vapor equilibrated Nafion, Macromolecules 49, 7296–7307. [Google Scholar]
  • Klein M., Perrin J.C., Leclerc S., Guendouz L., Dillet J., Lottin O. (2013) Spatially and Temporally Resolved Measurement of Water Distribution in Nafion Using NMR Imaging, in Polymer electrolyte fuel cells 13, vol. 58, H.A. Gasteiger, A. Weber, K. Shinohara, H. Uchida, S. Mitsushima, T.J. Schmidt, S.R. Narayanan, V. Ramani, T. Fuller, M. Edmundson, P. Strasser, R. Mantz, J. Fenton, F.N. Buchi, D.C. Hansen, D.L. Jones, C. Coutanceau, K. SwiderLyons, K.A. Perry (eds),The Electrochemical Society, Pennington, NJ, pp. 283–289. [Google Scholar]
  • Mrad C., Perrin J.-C., El Kaddouri A., Guendouz L., Mozet K., Dillet J., Lottin O. (2023) NMR characterization of proton exchange membranes in controlled hygrometry conditions, J. Membr. Sci. 688, 122111. [Google Scholar]
  • Ouriadov A.V., MacGregor R.P., Balcom B.J. (2004) Thin film MRI – high resolution depth imaging with a local surface coil and spin echo SPI, J. Magn. Reson. 169, 174–186. [Google Scholar]
  • Didierjean S., Perrin J.C., Xu F., Maranzana G., Klein M., Mainka J., Lottin O. (2015) Theoretical evidence of the difference in kinetics of water sorption and desorption in Nafion® membrane and experimental validation, J. Power Sources 300, 50–56. [Google Scholar]
  • Satterfield M.B., Benziger J.B. (2008) Non-fickian water vapor sorption dynamics by nafion membranes, J. Phys. Chem. B 112, 3693–3704. [Google Scholar]
  • Monroe C.W., Romero T., Merida W., Eikerling M. (2008) A vaporization-exchange model for water sorption and flux in Nafion, J. Membr. Sci. 324, 1–6. [Google Scholar]
  • Majsztrik P., Bocarsly A., Benziger J. (2008) Water permeation through Nafion membranes: the role of water activity, J. Phys. Chem. B 112, 16280–16289. [Google Scholar]
  • Hwang G.S., Parkinson D.Y., Kusoglu A., MacDowell A.A., Weber A.Z. (2013) Understanding water uptake and transport in Nafion using X-ray microtomography, ACS Macro Lett. 2, 288–291. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.