Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
Power Components For Electric Vehicles
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2516/stet/2023033 | |
Published online | 29 November 2023 |
- Nezamuddin O.N., Nicholas C.L., Santos E.C.d. (2022) The problem of electric vehicle charging: state-of-the-art and an innovative solution, IEEE Trans. Intell. Transp. Syst. 23, 5, 4663–4673. https://doi.org/10.1109/TITS.2020.3048728. [CrossRef] [Google Scholar]
- El Harouri K., El Hani S., Naseri N., Elbouchikhi E., Benbouzid M., Skander-Mustapha S. (2023) Hybrid control and energy management of a residential system integrating vehicle-to-home technology, Designs 7, 2, 52. [CrossRef] [Google Scholar]
- Ben Said-Romdhane M., Skander-Mustapha S., Belhassen R. (2022) Adaptative deadbeat predictive control for PMSM based electric vehicle, in: 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 26–28 October 2022, Tunis, Tunisia, pp. 1–6. https://doi.org/10.1109/CISTEM55808.2022.10043945. [Google Scholar]
- Ben Said-Romdhane M., Skander-Mustapha S. (2021) A review on vehicle-integrated photovoltaic panels, in: Motahhir S., Eltamaly A.M. (eds.), Advanced Technologies for Solar Photovoltaics Energy Systems. Green Energy and Technology, Springer, Cham. https://doi.org/10.1007/978-3-030-64565-6_12. [Google Scholar]
- Said-Romdhane M.B., Skander-Mustapha S., Slama-Belkhodja I. (2021) Analysis study of city obstacles shading impact on solar PV vehicle, in: 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Dec. 6–8, 2021. https://doi.org/10.1109/ISAECT53699.2021.9668573. [Google Scholar]
- Ben Said-Romdhane M., Skander-Mustapha S., Slama-Belkhodja I., Robust control for energy storage system dedicated to solar-powered electric vehicle, in: Motahhir S. (eds.), Digital Technologies for Solar Photovoltaic Systems: From general to rural and remote installations. IET publisher, 2022. https://doi.org/10.1049/PBPO228E_ch13. [Google Scholar]
- Deng W., Zuo S. (2019) Electromagnetic vibration and noise of the permanent-magnet synchronous motors for electric vehicles: an overview, IEEE Trans. Transp. Electrification 5, 1, 59–70. https://doi.org/10.1109/TTE.2018.2875481. [CrossRef] [MathSciNet] [Google Scholar]
- Sain C., Banerjee A., Biswas P.K., Padmanaban S. (2020) A state-of-the-art review on solar-powered energy-efficient PMSM drive smart electric vehicle for sustainable development, in: A. Bhoi, K. Sherpa, A. Kalam, G.S. Chae (eds.), Advances in Greener Energy Technologies. Green Energy and Technology, Springer, Singapore. https://doi.org/10.1007/978-981-15-4246-6_15. [Google Scholar]
- Sreejith R., Singh B. (2019) Intelligent nonlinear sensorless predictive field oriented control of PMSM drive for three wheeler hybrid solar PV-battery electric vehicle, IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6. https://doi.org/10.1109/ITEC.2019.8790458. [Google Scholar]
- Ton T.-D., Hsieh M.-F., Chen P.-H. (2021) A novel robust sensorless technique for field-oriented control drive of permanent magnet synchronous motor, IEEE Access 9, 100882–100894. https://doi.org/10.1109/ACCESS.2021.3097120. [CrossRef] [Google Scholar]
- Ding H., Zou X., Li J. (2022) Sensorless control strategy of permanent magnet synchronous motor based on fuzzy sliding mode observer, IEEE Access 10, 36743–36752. https://doi.org/10.1109/ACCESS.2022.3164519. [CrossRef] [Google Scholar]
- Wang W., Shen H., Hou L., Gu H. (2019) H∞ robust control of permanent magnet synchronous motor based on PCHD, IEEE Access 7, 49150–49156. https://doi.org/10.1109/ACCESS.2019.2893243. [CrossRef] [Google Scholar]
- Zhang C., Wu G., Rong F., Feng J., Jia L., He J., Huang S. (2018) Robust fault-tolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault, IEEE Trans. Ind. Electron. 65, 7, 5324–5334. https://doi.org/10.1109/TIE.2017.2774758. [CrossRef] [MathSciNet] [Google Scholar]
- Rabbi S.F., Halloran M.P., LeDrew T., Matchem A., Rahman M.A. (2016) Modeling and V/F control of a hysteresis interior permanent-magnet motor, IEEE Trans. Ind. Appl. 52, 2, 1891–1901. https://doi.org/10.1109/TIA.2015.2505666. [Google Scholar]
- Li Y., Li Y., Wang Q. (2020) Robust predictive current control with parallel compensation terms against multi-parameter mismatches for PMSMs, IEEE Trans. Energy Convers. 35, 4, 2222–2230. https://doi.org/10.1109/TEC.2020.3002274. [CrossRef] [Google Scholar]
- Zhang X., Zhang L., Zhang Y. (2019) Model predictive current control for PMSM drives with parameter robustness improvement, IEEE Trans. Power Electron. 34, 2, 1645–1657. https://doi.org/10.1109/TPEL.2018.2835835. [CrossRef] [Google Scholar]
- Long J., Yang M., Chen Y., Liu K., Xu D. (2021) Current-controller-free self-commissioning scheme for deadbeat predictive control in parametric uncertain SPMSM, IEEE Access 9, 289–302. https://doi.org/10.1109/ACCESS.2020.3043751. [CrossRef] [Google Scholar]
- Boglietti A., Carpaneto E., Cossale M., Vaschetto S. (2016) Stator-winding thermal models for short-time thermal transients: definition and validation, IEEE Trans. Ind. Electron. 63, 5, 2713–2721. https://doi.org/10.1109/TIE.2015.2511170. [CrossRef] [Google Scholar]
- Kral C., Haumer A., Lee S.B. (2014) A practical thermal model for the estimation of permanent magnet and stator winding temperatures, IEEE Trans. Power Electron. 29, 1, 455–464. https://doi.org/10.1109/TPEL.2013.2253128. [CrossRef] [Google Scholar]
- Dariusz C., Jakub G., Krzysztof K. (2021) Machine learning for sensorless temperature estimation of a BLDC motor, Sensors 21, 14, 4655. https://doi.org/10.3390/s21144655. [CrossRef] [PubMed] [Google Scholar]
- Li Z., Feng G., Lai C., Li W., Kar N.C. (2021) Current injection-based simultaneous stator winding and PM temperature estimation for dual three-phase PMSMs, IEEE Trans. Ind. Appl. 57, 5, 4933–4945. https://doi.org/10.1109/TIA.2021.3091664. [CrossRef] [Google Scholar]
- Ding H., Gong X., Gong Y. (2020) Estimation of rotor temperature of permanent magnet synchronous motor based on model reference fuzzy adaptive control, Math. Prob. Eng. 1–11. [Google Scholar]
- Guo H., Ding Q., Song Y., Tang H., Wang L., Zhao J. (2020) Predicting temperature of permanent magnet synchronous motor based on deep neural network, Energies 13, 18, 4782–4796. [CrossRef] [Google Scholar]
- Jun B.S., Park J.S., Choi J.H., Lee K.D., Won C.Y. (2018) Temperature estimation of stator winding in permanent magnet synchronous motors using d-axis current injection, Energies 11, 8, 2033–2047. [CrossRef] [Google Scholar]
- https://wulingauto.en.made-in-china.com/product/asEnyWhDqQRL/China-48V3kw-AC-Asynchronous-Motor-Electric-Golf-Cart-2-4-Seats.html. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.