Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
Power Components For Electric Vehicles
|
|
---|---|---|
Numéro d'article | 35 | |
Nombre de pages | 10 | |
DOI | https://doi.org/10.2516/stet/2023033 | |
Publié en ligne | 29 novembre 2023 |
- Nezamuddin O.N., Nicholas C.L., Santos E.C.d. (2022) The problem of electric vehicle charging: state-of-the-art and an innovative solution, IEEE Trans. Intell. Transp. Syst. 23, 5, 4663–4673. https://doi.org/10.1109/TITS.2020.3048728. [CrossRef] [Google Scholar]
- El Harouri K., El Hani S., Naseri N., Elbouchikhi E., Benbouzid M., Skander-Mustapha S. (2023) Hybrid control and energy management of a residential system integrating vehicle-to-home technology, Designs 7, 2, 52. [CrossRef] [Google Scholar]
- Ben Said-Romdhane M., Skander-Mustapha S., Belhassen R. (2022) Adaptative deadbeat predictive control for PMSM based electric vehicle, in: 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 26–28 October 2022, Tunis, Tunisia, pp. 1–6. https://doi.org/10.1109/CISTEM55808.2022.10043945. [Google Scholar]
- Ben Said-Romdhane M., Skander-Mustapha S. (2021) A review on vehicle-integrated photovoltaic panels, in: Motahhir S., Eltamaly A.M. (eds.), Advanced Technologies for Solar Photovoltaics Energy Systems. Green Energy and Technology, Springer, Cham. https://doi.org/10.1007/978-3-030-64565-6_12. [Google Scholar]
- Said-Romdhane M.B., Skander-Mustapha S., Slama-Belkhodja I. (2021) Analysis study of city obstacles shading impact on solar PV vehicle, in: 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Dec. 6–8, 2021. https://doi.org/10.1109/ISAECT53699.2021.9668573. [Google Scholar]
- Ben Said-Romdhane M., Skander-Mustapha S., Slama-Belkhodja I., Robust control for energy storage system dedicated to solar-powered electric vehicle, in: Motahhir S. (eds.), Digital Technologies for Solar Photovoltaic Systems: From general to rural and remote installations. IET publisher, 2022. https://doi.org/10.1049/PBPO228E_ch13. [Google Scholar]
- Deng W., Zuo S. (2019) Electromagnetic vibration and noise of the permanent-magnet synchronous motors for electric vehicles: an overview, IEEE Trans. Transp. Electrification 5, 1, 59–70. https://doi.org/10.1109/TTE.2018.2875481. [CrossRef] [MathSciNet] [Google Scholar]
- Sain C., Banerjee A., Biswas P.K., Padmanaban S. (2020) A state-of-the-art review on solar-powered energy-efficient PMSM drive smart electric vehicle for sustainable development, in: A. Bhoi, K. Sherpa, A. Kalam, G.S. Chae (eds.), Advances in Greener Energy Technologies. Green Energy and Technology, Springer, Singapore. https://doi.org/10.1007/978-981-15-4246-6_15. [Google Scholar]
- Sreejith R., Singh B. (2019) Intelligent nonlinear sensorless predictive field oriented control of PMSM drive for three wheeler hybrid solar PV-battery electric vehicle, IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6. https://doi.org/10.1109/ITEC.2019.8790458. [Google Scholar]
- Ton T.-D., Hsieh M.-F., Chen P.-H. (2021) A novel robust sensorless technique for field-oriented control drive of permanent magnet synchronous motor, IEEE Access 9, 100882–100894. https://doi.org/10.1109/ACCESS.2021.3097120. [CrossRef] [Google Scholar]
- Ding H., Zou X., Li J. (2022) Sensorless control strategy of permanent magnet synchronous motor based on fuzzy sliding mode observer, IEEE Access 10, 36743–36752. https://doi.org/10.1109/ACCESS.2022.3164519. [CrossRef] [Google Scholar]
- Wang W., Shen H., Hou L., Gu H. (2019) H∞ robust control of permanent magnet synchronous motor based on PCHD, IEEE Access 7, 49150–49156. https://doi.org/10.1109/ACCESS.2019.2893243. [CrossRef] [Google Scholar]
- Zhang C., Wu G., Rong F., Feng J., Jia L., He J., Huang S. (2018) Robust fault-tolerant predictive current control for permanent magnet synchronous motors considering demagnetization fault, IEEE Trans. Ind. Electron. 65, 7, 5324–5334. https://doi.org/10.1109/TIE.2017.2774758. [CrossRef] [MathSciNet] [Google Scholar]
- Rabbi S.F., Halloran M.P., LeDrew T., Matchem A., Rahman M.A. (2016) Modeling and V/F control of a hysteresis interior permanent-magnet motor, IEEE Trans. Ind. Appl. 52, 2, 1891–1901. https://doi.org/10.1109/TIA.2015.2505666. [Google Scholar]
- Li Y., Li Y., Wang Q. (2020) Robust predictive current control with parallel compensation terms against multi-parameter mismatches for PMSMs, IEEE Trans. Energy Convers. 35, 4, 2222–2230. https://doi.org/10.1109/TEC.2020.3002274. [CrossRef] [Google Scholar]
- Zhang X., Zhang L., Zhang Y. (2019) Model predictive current control for PMSM drives with parameter robustness improvement, IEEE Trans. Power Electron. 34, 2, 1645–1657. https://doi.org/10.1109/TPEL.2018.2835835. [CrossRef] [Google Scholar]
- Long J., Yang M., Chen Y., Liu K., Xu D. (2021) Current-controller-free self-commissioning scheme for deadbeat predictive control in parametric uncertain SPMSM, IEEE Access 9, 289–302. https://doi.org/10.1109/ACCESS.2020.3043751. [CrossRef] [Google Scholar]
- Boglietti A., Carpaneto E., Cossale M., Vaschetto S. (2016) Stator-winding thermal models for short-time thermal transients: definition and validation, IEEE Trans. Ind. Electron. 63, 5, 2713–2721. https://doi.org/10.1109/TIE.2015.2511170. [CrossRef] [Google Scholar]
- Kral C., Haumer A., Lee S.B. (2014) A practical thermal model for the estimation of permanent magnet and stator winding temperatures, IEEE Trans. Power Electron. 29, 1, 455–464. https://doi.org/10.1109/TPEL.2013.2253128. [CrossRef] [Google Scholar]
- Dariusz C., Jakub G., Krzysztof K. (2021) Machine learning for sensorless temperature estimation of a BLDC motor, Sensors 21, 14, 4655. https://doi.org/10.3390/s21144655. [CrossRef] [PubMed] [Google Scholar]
- Li Z., Feng G., Lai C., Li W., Kar N.C. (2021) Current injection-based simultaneous stator winding and PM temperature estimation for dual three-phase PMSMs, IEEE Trans. Ind. Appl. 57, 5, 4933–4945. https://doi.org/10.1109/TIA.2021.3091664. [CrossRef] [Google Scholar]
- Ding H., Gong X., Gong Y. (2020) Estimation of rotor temperature of permanent magnet synchronous motor based on model reference fuzzy adaptive control, Math. Prob. Eng. 1–11. [Google Scholar]
- Guo H., Ding Q., Song Y., Tang H., Wang L., Zhao J. (2020) Predicting temperature of permanent magnet synchronous motor based on deep neural network, Energies 13, 18, 4782–4796. [CrossRef] [Google Scholar]
- Jun B.S., Park J.S., Choi J.H., Lee K.D., Won C.Y. (2018) Temperature estimation of stator winding in permanent magnet synchronous motors using d-axis current injection, Energies 11, 8, 2033–2047. [CrossRef] [Google Scholar]
- https://wulingauto.en.made-in-china.com/product/asEnyWhDqQRL/China-48V3kw-AC-Asynchronous-Motor-Electric-Golf-Cart-2-4-Seats.html. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.