Sci. Tech. Energ. Transition
Volume 78, 2023
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 34
Number of page(s) 12
Published online 15 November 2023
  • Shimaa Barakat A., Samy Emam M.M. (2022) Investigating grid-connected green power systems’ energy storage solutions in the event of frequent blackouts, Energy Rep. 8, 5177–5191. [CrossRef] [Google Scholar]
  • Savasci A., Inaolaji A., Paudyal S. (2022) Two-Stage Volt-Var Optimization of distribution grids with smart inverters and legacy devices, IEEE Transactions on Industry Applications 58, 5, 5711–5723. [CrossRef] [Google Scholar]
  • Ai Y.L., Du M.Z., Pan Z.H., Li G.X. (2021) The optimization of reactive power for distribution network with photovoltaic generation based on NSGA-III, CPSS Transactions on Power Electronics and Applications 6, 3, 193–200. [CrossRef] [Google Scholar]
  • Antalem D.T., Muneer V., Bhattacharya A. (2023) Decentralized control of islanding/grid-connected hybrid DC/AC microgrid using interlinking converters, Sci. Tech. Energ. Transition 77, 22. [Google Scholar]
  • Mokhtara C., Negrou B., Settou N., Settou B., Samy M.M. (2021) Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria, Energy 219, 119605. [CrossRef] [Google Scholar]
  • Samy M.M., Barakat S. (2019) Hybrid invasive weed optimization – particle swarm optimization algorithm for biomass/PV micro-grid power system, in: The 21st International Middle East Power Systems Conference (MEPCON), Tanta University, Egypt, December 17–19, pp. 377–382. [Google Scholar]
  • Reddy C.S.R., Prasanth B.V., Chandra B.M. (2023) Active power management of grid-connected PV-PEV using a Hybrid GRFO-ITSA technique, Sci. Technol. Energ. Transition 78, 7. [CrossRef] [Google Scholar]
  • Wang H.Y., Fu H., Zhou C. (2023) A Two-stage coordinated line loss reduction model based on elephant herding optimization and second-order cone programming, Energy Reports 9, S7, 930–938. [CrossRef] [Google Scholar]
  • Zhang C., Xu Y., Dong Z.Y., et al. (2020) Multi-objective adaptive robust voltage/VAR control for high-photovoltaic penetrated distribution networks, IEEE Trans. Smart Grid 11, 6, 5288–5300. [CrossRef] [Google Scholar]
  • Lai X.W., Xie L., Xia Q., Zhong H.W., Kang C.Q. (2015) Decentralized multi-area economic dispatch via dynamic multiplier-based Lagrangian relaxation, Syst. 30, 6, 3225–3233. [Google Scholar]
  • Zheng W., Wu W.C., Zhang B.M., Sun H.B., Liu Y.B. (2016) A fully distributed reactive power optimization and control method for active distribution networks, IEEE Trans. Smart Grid 7, 2, 1021–1033. [Google Scholar]
  • Hou H., Wang Z., Zhao B., Zhang L.Q., Shi Y., Xie C.J. (2023) Peer-to-Peer Energy trading among multiple microgrids considering risks over uncertainty and distribution network reconfiguration: a fully distributed optimization method, Int. J. Electr. Power Energy Syst. 153, 109316. [CrossRef] [Google Scholar]
  • Wang W., Yu N., Gao Y., Shi J. (2020) Safe off-policy deep reinforcement learning algorithm for Volt-VAR control in power distribution systems, IEEE Trans. Smart Grid 11, 4, 3008–3018. [CrossRef] [MathSciNet] [Google Scholar]
  • Liao W., Chen J., Liu Q., Zhu R.J., Song L.K., Yang z. (2022) Data-driven reactive power optimization for distribution networks using capsule networks, J. Modern Power Syst. Clean Energ. 10, 5, 1274–1287. [CrossRef] [Google Scholar]
  • Peyghami S., Blaabjerg F., Palensky P. (2021) Incorporating power electronic converters reliability into modern power system reliability analysis, IEEE J. Emerg. Sel. Top. Power Electron. 9, 2, 1668–1681. [CrossRef] [Google Scholar]
  • Zhang B., Gao Y. (2023) The optimal capacity ratio and power limit setting method of the photovoltaic generation system based on the IGBT reliability and photovoltaic economy, Microelectron. Reliability 148, 115145. [CrossRef] [Google Scholar]
  • Wang H., Liserre M., Blaabjerg F., Rimmen P.D., Jacobsen J.B., Kvisgaard T., Landkildehus J. (2014) Transitioning to physics-of-failure as a reliability driver in power electronics, IEEE J. Emerg. Sel. Top. Power Electron. 2, 1, 97–114. [CrossRef] [Google Scholar]
  • Ml K., Wang H., Blaabjerg F. (2016) New approaches to reliability assessment: using physics-of-failure for prediction and design in power electronics systems, IEEE Power Electron. Mag. 3, 4, 28–41. [CrossRef] [Google Scholar]
  • Zhang B., Gao Y. (2023) IGBT Reliability analysis of photovoltaic inverter with reactive power output capability, Microelectron. Reliability 147, 115073. [CrossRef] [Google Scholar]
  • Musallam M., Yin C.Y., Bailey C., Johnson M. (2015) Mission profile-based reliability design and real-time life consumption estimation in power electronics, IEEE Trans. Power Electron. 30, 5, 2601–2613. [CrossRef] [Google Scholar]
  • De León-aldaco S.E., Calleja H., Chan F., Jimenez-Grajales H. (2013) Effect of the mission profile on the reliability of a power converter aimed at photovoltaic applications – a case study, IEEE Transactions on Power Electronics 28, 6, 2998–3007. [CrossRef] [Google Scholar]
  • Sangwongwanich A., Blaabjerg F. (2021) Monte Carlo simulation with incremental damage for reliability assessment of power electronics, IEEE Trans. Power Electron. 36, 7, 7366–7371. [CrossRef] [Google Scholar]
  • Novak M., Sangwongwanich A., Blaabjerg F. (2021) Monte Carlo-based reliability estimation methods for power devices in power electronics systems, IEEE Open J. Power Electron. 2, 523–534. [CrossRef] [Google Scholar]
  • Da Silveira Brito E.M., Cupertino A.F., Pereira H.A., Mendes V.F. (2022) Reliability-based trade-off analysis of reactive power capability in photovoltaic inverters under different sizing ratio, Int. J. Electr. Power Energy Syst. 136, 107677. [CrossRef] [Google Scholar]
  • Gandhi O., Rodriguez-Gallegos C.D., Gorla N.B.Y., Bieri M., Reindl T., Srinivasan D. (2019) Reactive power cost from photovoltaic inverters considering inverter lifetime assessment, IEEE Trans. Sustain. Energy 10, 2, 738–747. [CrossRef] [Google Scholar]
  • Yang Y.H., Wang H., Blaabjerg F. (2014) Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements, IEEE Trans. Indus. Appl. 50, 6, 4065–4076. [CrossRef] [Google Scholar]
  • Diaz Reigosa P., Wang H., Yang Y.H., Blaabjerg F. (2016) Prediction of bond wire fatigue of IGBTs in a photovoltaic Inverter under a long-term operation, IEEE Trans. Power Electron. 31, 10, 7171–7182. [Google Scholar]
  • Andresen M., Ma K., Buticchi G., Falck J., Blaabjerg F., Liserre M. (2018) Junction temperature control for more reliable power electronics, IEEE Trans. Power Electron. 33, 1, 765–776. [CrossRef] [Google Scholar]
  • Gatla R.K., Zhu G.R., Lu J.H., Kshatri S.S., Devineni G.K. (2022) The impact of mission profile on system level reliability of cascaded H-Bridge Multilevel photovoltaic Inverter, Microelectron. Reliability 138, 114639. [CrossRef] [Google Scholar]
  • Musallam M., Johnson C.M. (2012) An efficient implementation of the rainflow counting algorithm for life consumption estimation, IEEE Trans. Reliab. 61, 4, 978–986. [CrossRef] [Google Scholar]
  • Bayerer R., Herrmann T., Licht T., Lutz J., Feller M. (2008) Model for power cycling lifetime of IGBT modules-various factors influencing lifetime, in: The 5th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, pp. 1–6. [Google Scholar]
  • Baran M.E., Wu F.F. (1989) Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Trans. Power Delivery 4, 2, 1401–1407. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.