Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
Selected Papers from First European Conference on Gas Hydrates (ECGH), 2022
|
|
---|---|---|
Article Number | 36 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2516/stet/2023034 | |
Published online | 06 December 2023 |
- IEA – International Energy Agency. (2016) 20 years of carbon capture and storage – accelerating future deployment. OECD/IEA. [Google Scholar]
- Rayward-Smith W.J., Woods A.W. (2011) Some implications of cold CO2 injection into deep saline aquifers, Geophys. Res. Lett. 38, 6, n/a–n/a. https://doi.org/10.1029/2010GL046412. [Google Scholar]
- Vilarrasa V., Silva O., Carrera J., et al. (2013) Liquid CO2 injection for geological storage in deep saline aquifers, Int. J. Greenh. Gas Control 14, 84–96. https://doi.org/10.1016/j.ijggc.2013.01.015. [CrossRef] [Google Scholar]
- Hoteit H., Fahs M., Soltanian M.R. (2019) Assessment of CO2 injectivity during sequestration in depleted gas reservoirs, Geosciences 9, 5, 199. https://doi.org/10.3390/geosciences9050199. [CrossRef] [Google Scholar]
- Oldenburg C.M. (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs, Energy Convers. Manag. 48, 6, 1808–1815. https://doi.org/10.1016/j.enconman.2007.01.010. [CrossRef] [Google Scholar]
- Gao M., Wang L., Chen X., et al. (2021) Joule–Thomson effect on a CCS-relevant (CO2 + N2) system, ACS Omega 6, 14, 9857–9867. https://doi.org/10.1021/acsomega.1c00554. [CrossRef] [PubMed] [Google Scholar]
- Sloan E.D. Jr., Koh C.A. (2008) Clathrate hydrates of natural gases, 3rd ed., CRC Press, Boca Raton. https://doi.org/10.1201/9781420008494. [Google Scholar]
- Ho-Van S., Douzet J., Le-Quang D., Bouillot B., Herri J.M. (2016) Behavior of cyclopentane hydrates formation and dissociation in pure water and in the presence of sodium chloride, in: International Conferences On Earth Sciences And Sustainable Georesources Development-ESASGD, Hanoï, Vietnam. pp. 150–157. https://hal.science/hal-01466636. [Google Scholar]
- Sun S., Peng X., Zhang Y., et al. (2017) Stochastic nature of nucleation and growth kinetics of THF hydrate, J. Chem. Thermodyn. 107, 141–152. https://doi.org/10.1016/j.jct.2016.12.026. [CrossRef] [Google Scholar]
- Zeng H., Wilson L.D., Walker V.K., et al. (2006) Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation, J. Am. Chem. Soc. 128, 9, 2844–2850. https://doi.org/10.1021/ja0548182. [CrossRef] [PubMed] [Google Scholar]
- Martinez de Baños M.L., Carrier O., Bouriat P., et al. (2015) Droplet-based millifluidics as a new tool to investigate hydrate crystallization: insights into the memory effect, Chem. Eng. Sci. 123, 564–572. https://doi.org/10.1016/j.ces.2014.11.018. [CrossRef] [Google Scholar]
- Ho-Van S., Bouillot B., Garcia D., et al. (2019) Crystallization mechanisms and rates of cyclopentane hydrates formation in brine, Chem. Eng. Technol. 42, 7, 1481–1491. https://doi.org/10.1002/ceat.201800746. [CrossRef] [Google Scholar]
- Maghsoodloo Babakhani S., Ho-Van S., Bouillot B., et al. (2020) Phase equilibrium measurements and modelling of mixed cyclopentane and carbon dioxide hydrates in presence of salts, Chem. Eng. Sci. 214, 115442–115453. https://doi.org/10.1016/j.ces.2019.115442. [CrossRef] [Google Scholar]
- Zylyftari G., Ahuja A., Morris J.F. (2014) Nucleation of cyclopentane hydrate by ice studied by morphology and rheology, Chem. Eng. Sci. 116, 497–507. https://doi.org/10.1016/j.ces.2014.05.019. [CrossRef] [Google Scholar]
- Sakemoto R., Sakamoto H., Shiraiwa K., et al. (2010) Clathrate hydrate crystal growth at the seawater/hydrophobic−guest−liquid interface, Cryst. Growth Des. 10, 3, 1296–1300. https://doi.org/10.1021/cg901334z. [CrossRef] [Google Scholar]
- Li X., Wang C., Liang S., et al. (2020) Experimental visualization of cyclopentane hydrate dissociation behavior in a microfluidic chip, Chem. Eng. Sci. 227, 115937. https://doi.org/10.1016/j.ces.2020.115937. [CrossRef] [Google Scholar]
- Zhao C.-X., Middelberg A.P. (2011) Two-phase microfluidic flows, Chem. Eng. Sci. 66, 7, 1394–1411. https://doi.org/10.1016/j.ces.2010.08.038. [CrossRef] [Google Scholar]
- Utada A.S., Fernandez-Nieves A., Stone H.A., et al. (2007) Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett. 99, 9, 94502. https://doi.org/10.1103/PhysRevLett.99.094502. [CrossRef] [Google Scholar]
- Atig D., Touil A., Ildefonso M., et al. (2018) A droplet-based millifluidic method for studying ice and gas hydrate nucleation, Chem. Eng. Sci. 192, 1189–1197. https://doi.org/10.1016/j.ces.2018.08.003. [CrossRef] [Google Scholar]
- Touil A., Broseta D., Desmedt A. (2019) Gas hydrate crystallization in thin glass capillaries: roles of supercooling and wettability, Langmuir 35, 38, 12569–12581. https://doi.org/10.1021/acs.langmuir.9b01146. [CrossRef] [PubMed] [Google Scholar]
- Cai L., Pethica B.A., Debenedetti P.G., et al. (2016) Formation of cyclopentane methane binary clathrate hydrate in brine solutions, Chem. Eng. Sci. 141, 125–132. https://doi.org/10.1016/j.ces.2015.11.001. [CrossRef] [Google Scholar]
- Touil A., Broseta D., Hobeika N., et al. (2017) Roles of wettability and supercooling in the spreading of cyclopentane hydrate over a substrate, Langmuir 33, 41, 10965–10977. https://doi.org/10.1021/acs.langmuir.7b02121. [CrossRef] [PubMed] [Google Scholar]
- Miralles V., Huerre A., Malloggi F., et al. (2013) A review of heating and temperature control in microfluidic systems: techniques and applications, Diagnostics 3, 1, 33–67. https://doi.org/10.3390/diagnostics3010033. [CrossRef] [PubMed] [Google Scholar]
- Davaj B. (2016) Thermal microfluidic devices; design, fabrication and applications, PhD Thesis. Marquette University, 33 p. [Google Scholar]
- Stan C.A., Schneider G.F., Shevkoplyas S.S., et al. (2009) A microfluidic apparatus for the study of ice nucleation in supercooled water drops, Lab Chip 9, 16, 2293–2305. https://doi.org/10.1039/b906198c. [CrossRef] [PubMed] [Google Scholar]
- Teychené S., Biscans B. (2012) Crystal nucleation in a droplet based microfluidic crystallizer, Chem. Eng. Sci. 77, 242–248. https://doi.org/10.1016/j.ces.2012.01.036. [CrossRef] [Google Scholar]
- Teychené S., Biscans B. (2011) Microfluidic device for the crystallization of organic molecules in organic solvents, Cryst. Growth Des. 11, 11, 4810–4818. https://doi.org/10.1021/cg2004535. [CrossRef] [Google Scholar]
- Radajewski D. (2017) Etudes de nucléation de protéines à l’aide de dispositifs expérimentaux microfludiques, PhD Thesis. Toulouse University, 27 p. [Google Scholar]
- Ho-Van S., Bouillot B., Douzet J., et al. (2018) Experimental measurement and thermodynamic modeling of cyclopentane hydrates with NaCl, KCl, CaCl2, or NaCl-KCl present, AIChE J. 64, 6, 2207–2218. https://doi.org/10.1002/aic.16067. [CrossRef] [Google Scholar]
- Kishimoto M., Iijima S., Ohmura R. (2012) Crystal growth of clathrate hydrate at the interface between seawater and hydrophobic-guest liquid: effect of elevated salt concentration, Ind. Eng. Chem. Res. 51, 14, 5224–5229. https://doi.org/10.1021/ie202785z. [CrossRef] [Google Scholar]
- Sun C.Y., Peng B.Z., Dandekar A., et al. (2010) Studies on hydrate film growth, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 106, 77. https://doi.org/10.1039/b811053k. [CrossRef] [Google Scholar]
- Sefidroodi H., Abrahamsen E., Kelland M.A. (2013) Investigation into the strength and source of the memory effect for cyclopentane hydrate, Chem. Eng. Sci. 87, 133–140. https://doi.org/10.1016/j.ces.2012.10.018. [CrossRef] [Google Scholar]
- Zylyftari G., Lee J.W., Morris J.F. (2013) Salt effects on thermodynamic and rheological properties of hydrate forming emulsions, Chem. Eng. Sci. 95, 148–160. https://doi.org/10.1016/j.ces.2013.02.056. [CrossRef] [Google Scholar]
- Qi Y., Wu W., Liu Y., et al. (2012) The influence of NaCl ions on hydrate structure and thermodynamic equilibrium conditions of gas hydrates, Fluid Phase Equilib. 325, 6–10. https://doi.org/10.1016/j.fluid.2012.04.009. [CrossRef] [Google Scholar]
- Lv Y.-N., Wang S.-S., Sun C.-Y., et al. (2017) Desalination by forming hydrate from brine in cyclopentane dispersion system, Desalination 413, 217–222. https://doi.org/10.1016/j.desal.2017.03.025. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.