Sci. Tech. Energ. Transition
Volume 78, 2023
Synthesis and characterisation of porous materials for clean energy applications
Article Number 33
Number of page(s) 6
Published online 14 November 2023
  • Chu S., Majumdar A. (2012) Opportunities and challenges for a sustainable energy future, Nature 488, 294–303. [CrossRef] [PubMed] [Google Scholar]
  • Antonakakis N., Chatziantoniou I., Filis G. (2017) Energy consumption, CO2 emissions, and economic growth: an ethical dilemma, Renew. Sustain. Energy Rev. 68, 808–824. [CrossRef] [Google Scholar]
  • Canepa P., Sai Gautam G., Hannah D.C., Malik R., Liu M., Gallagher K.G., Persson K.A., Ceder G. (2017) Odyssey of multivalent cathode materials: open questions and future challenges, Chem. Rev. 117, 4287–4341. [CrossRef] [PubMed] [Google Scholar]
  • Goodenough J.B., Kim Y. (2010) Challenges for rechargeable Li batteries, Chem. Mater. 22, 587–603. [CrossRef] [Google Scholar]
  • Divya K.C., Østergaard J. (2009) Battery energy storage technology for power systems—an overview, Electr. Power Syst. Res. 79, 511–520. [CrossRef] [Google Scholar]
  • Mizushima K., Jones P.C., Wiseman P.J., Goodenough J.B. (1980) LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density, Mater. Res. Bull. 15, 783–789. [CrossRef] [Google Scholar]
  • Zhang H., Mao C., Li J., Chen R. (2017) Advances in electrode materials for Li-based rechargeable batteries, RSC Adv. 7, 33789–33811. [CrossRef] [Google Scholar]
  • Lv W., Wang Z., Cao H., Sun Y., Zhang Y., Sun Z., (2018) A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustain. Chem. Eng. 6, 1504–1521. [CrossRef] [Google Scholar]
  • Dutta T., Kim K.-H., Deep A., Szulejko J.E., Vellingiri K., Kumar S., Kwon E.E., Yun S.-T. (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management, Renew. Sustain. Energy Rev. 82, 3694–3704. [CrossRef] [Google Scholar]
  • Perez E., Navarro Amador R., Carboni M., Meyer D. (2016) In-situ precipitation of metal–organic frameworks from a simulant battery waste solution, Mater. Lett. 167, 188–191. [CrossRef] [Google Scholar]
  • Perez E., Andre M.-L., Navarro Amador R., Hyvrard F., Borrini J., Carboni M., Meyer D. (2016) Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media, J. Hazard. Mater. 317, 617–621. [CrossRef] [Google Scholar]
  • Yang X.-Y., Chen L.-H., Li Y., Rooke J.C., Sanchez C., Su B.-L. (2017) Hierarchically porous materials: synthesis strategies and structure design, Chem. Soc. Rev. 46, 481–558. [CrossRef] [PubMed] [Google Scholar]
  • Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. (2013) The chemistry and applications of metal-organic frameworks, Science 341, 1230444–1230444. [CrossRef] [PubMed] [Google Scholar]
  • Du Z.-Q., Li Y.-P., Wang X.-X., Wang J., Zhai Q.-G. (2019) Enhanced electrochemical performance of Li–Co-BTC ternary metal–organic frameworks as cathode materials for lithium-ion batteries, Dalton Trans. 48, 2013–2018. [CrossRef] [PubMed] [Google Scholar]
  • Ma Y., He J., Kou Z., Elshahawy A.M., Hu Y., Guan C., Liang X., Wang J. (2018) MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes, Adv. Mater. Interfaces 5, 1800222. [CrossRef] [Google Scholar]
  • Wu J.-F., Guo X. (2019) MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries, J. Mater. Chem. A 7, 2653–2659. [CrossRef] [Google Scholar]
  • Cognet M., Gutel T., Peralta D., Maynadié J., Carboni M., Meyer D. (2017) Communication—iron(II)-benzene phosphonate coordination polymers as an efficient active material for negative electrode of lithium-ion batteries, J. Electrochem. Soc. 164, A2552–A2554. [CrossRef] [Google Scholar]
  • Xia W., Mahmood A., Zou R., Xu Q. (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Env. Sci 7, 1837–1866. [CrossRef] [Google Scholar]
  • Xu X., Cao R., Jeong S., Cho J. (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries, Nano Lett. 12, 4988–4991. [CrossRef] [PubMed] [Google Scholar]
  • Yu Z., Bai Y., Zhang S., Liu Y., Zhang N., Wang G., Wei J., Wu Q., Sun K., Appl A.C.S. (2018) Metal–organic framework-derived Co3ZnC/Co embedded in nitrogen-doped carbon nanotube-grafted carbon polyhedra as a high-performance electrocatalyst for water splitting, Mater. Interfaces 10, 6245–6252. [CrossRef] [PubMed] [Google Scholar]
  • Zhong Y., Xia X., Shi F., Zhan J., Tu J., Fan H.J. (2016) Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci. 3, 1500286. [CrossRef] [MathSciNet] [Google Scholar]
  • Naguib M., Come J., Dyatkin B., Presser V., Taberna P.-L., Simon P., Barsoum M.W., Gogotsi Y. (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16, 61–64. [CrossRef] [Google Scholar]
  • Gan Q., He H., Zhao K., He Z., Liu S. (2018) Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries, J. Colloid Interface Sci. 530, 127–136. [CrossRef] [Google Scholar]
  • Zhao H., Liu L., Hu Z., Sun L., Han S., Liu Y., Chen D., Liu X. (2016) Neutron diffraction analysis and electrochemical performance of spinel Ni(Mn2−xCox)O4 as anode materials for lithium ion battery, Mater. Res. Bull. 77, 265–270. [CrossRef] [Google Scholar]
  • Lee H.H., Lee J.B., Park Y., Park K.H., Okyay M.S., Shin D.-S., Kim S., Park J., Park N., An B.-K., Jung Y.S., Lee H.-W., Lee K.T., Hong S.Y., Appl A.C.S. (2018) Coordination polymers for high-capacity Li-ion batteries: metal-dependent solid-state reversibility, Mater. Interfaces 10, 22110–22118. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.