Open Access
Review
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 60 | |
DOI | https://doi.org/10.2516/stet/2023029 | |
Published online | 28 November 2023 |
- Ritchie H., Roser M., Rosado P. (2020) Energy, Our World in Data. [Google Scholar]
- Bruland K., Smith K. (2013) Assessing the role of steam power in the first industrial revolution: the early work of Nick von Tunzelmann, Res. Policy 42, 10, 1716–1723. https://doi.org/10.1016/j.respol.2012.12.008. [CrossRef] [Google Scholar]
- Clark G., Jacks D. (2007) Coal and the Industrial Revolution, 1700–1869, Eur. Rev. Econ. Hist. 11, 1, 39–72. https://doi.org/10.1017/S1361491606001870. [CrossRef] [Google Scholar]
- Clow A., Nan L.C. (1972) Vitriol in the industrial revolution, in Science, Technology and Economic Growth in the Eighteenth Century, Routledge. [Google Scholar]
- Nicolas Leblanc (1742-1806).Pdf. (accessed 2022-07-27) https://pubs.acs.org/doi/pdf/10.1021/ed019p567. [Google Scholar]
- Kanefsky J., Robey J. (1980) Steam engines in 18th-century Britain: a quantitative assessment, Technol. Cult. 21, 2, 161–186. https://doi.org/10.2307/3103337. [CrossRef] [Google Scholar]
- Alley R.B., Berntsen T., Bindoff N.L., Chen Z., Chidthaisong A., Friedlingstein P., Hegerl G.C., Heimann M., Hewitson B., Hoskins B.J., Joos F., Jouzel J., Kattsov V., Lohmann U., Manning M., Matsuno T., Molina M., Nicholls N., Overpeck J., Qin D., Raga G., Ramaswamy V., Ren J., Rusticucci M., Solomon S., Somerville R., Stocker T.F., Stott A., Stouffer R.J., Whetton P., Wood R.A., Wratt D., Arblaster J., Brasseur G., Christensen J.H., Denman K.L., Fahey D.W., Forster P., Jansen E., Jones P.D., Knutti R., Treut H.L., Lemke P., Meehl G., Mote P., Randall D.A., Stone D.A., Trenberth K.E., Willebrand J., Zwiers F.. IPCC Sixth Assessment, summary for Policymakers, p. 18. [Google Scholar]
- IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Volume 1, General Guidance and Reporting (accessed 2021-01-20). https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html. [Google Scholar]
- Karl T.R., Trenberth K.E. (2003) Modern global climate change, Science 302, 5651, 1719–1723. https://doi.org/10.1126/science.1090228. [CrossRef] [PubMed] [Google Scholar]
- Montzka S.A., Dlugokencky E.J., Butler J.H. (2011) Non-CO2 greenhouse gases and climate change, Nature 476, 7358, 43–50. https://doi.org/10.1038/nature10322. [CrossRef] [PubMed] [Google Scholar]
- IPCC. IPCC_AR6_WGII_SummaryForPolicymakers.Pdf (accessed 2022-07-13) https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_SummaryForPolicymakers.pdf [Google Scholar]
- Our World in Data. The world’s energy problem. Our World in Data. (accessed 2022-07-13). https://ourworldindata.org/worlds-energy-problem [Google Scholar]
- Gibon T., Arvesen A., Hertwich E.G. (2017) Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options, Renew. Sust. Energ. Rev. 76, 1283–1290. https://doi.org/10.1016/j.rser.2017.03.078. [CrossRef] [Google Scholar]
- Hondo H. (2005) Life cycle GHG emission analysis of power generation systems: Japanese case, Energy 30, 11, 2042–2056. https://doi.org/10.1016/j.energy.2004.07.020. [CrossRef] [Google Scholar]
- Amponsah N.Y., Troldborg M., Kington B., Aalders I., Hough R.L. (2014) Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations, Renew. Sust. Energ. Rev. 39, 461–475. https://doi.org/10.1016/j.rser.2014.07.087. [CrossRef] [Google Scholar]
- Chiffres clés de l’énergie – Édition 2019, p. 80. [Google Scholar]
- Global Electricity Review (2022) Ember (accessed 2022-07-27) https://ember-climate.org/insights/research/global-electricity-review-2022/ [Google Scholar]
- LOI N° 2015-992 Du 17 Août 2015 Relative à La Transition Énergétique Pour La Croissance Verte (2015). [Google Scholar]
- Bremen L.V. (2010) Large-scale variability of weather dependent renewable energy sources, in Management of Weather and Climate Risk in the Energy Industry, A. Troccoli (ed.), NATO Science for Peace and Security Series C: Environmental Security. Dordrecht, Springer, Netherlands, pp. 189–206. https://doi.org/10.1007/978-90-481-3692-6_13 [CrossRef] [Google Scholar]
- éCO2mix - La production d’électricité par filière (accessed 2022-07-27). https://www.rte-france.com/eco2mix/la-production-delectricite-par-filiere [Google Scholar]
- Revol, M. Quand trop d’énergies renouvelables privent la Californie… d’électricité. Le Point (accessed 2020-08-25). https://www.lepoint.fr/economie/quand-trop-d-energies-renouvelables-privent-la-californie-d-electricite-20-08-2020-2388408_28.php. [Google Scholar]
- Energy Charts (accessed 2021-01-21). https://energy-charts.info/?l=fr&c=DE [Google Scholar]
- Saboori H., Hemmati R., Ghiasi S.M.S., Dehghan S. (2017) Energy storage planning in electric power distribution networks – a state-of-the-art review, Renew. Sust. Energ. Rev. 79, 1108–1121. https://doi.org/10.1016/j.rser.2017.05.171. [CrossRef] [Google Scholar]
- Akinyele D.O., Rayudu R.K. (2014) Review of energy storage technologies for sustainable power networks, Sustain. Energy Technol. Assess. 8, 74–91. https://doi.org/10.1016/j.seta.2014.07.004. [Google Scholar]
- Orecchini F. (2006) The era of energy vectors, Int. J. Hydrogen Energy 31, 14, 1951–1954. https://doi.org/10.1016/j.ijhydene.2006.01.015. [CrossRef] [Google Scholar]
- Chen L., Zheng T., Mei S., Xue X., Liu B., Lu Q. (2016) Review and prospect of compressed air energy storage system, J. Mod. Power Syst. Clean Energy 4, 4, 529–541. https://doi.org/10.1007/s40565-016-0240-5. [CrossRef] [Google Scholar]
- Geth F., Brijs T., Kathan J., Driesen J., Belmans R. (2015) An overview of large-scale stationary electricity storage plants in Europe: current status and new developments, Renew. Sust. Energ. Rev. 52, 1212–1227. https://doi.org/10.1016/j.rser.2015.07.145. [CrossRef] [Google Scholar]
- Capacitor-with-Cover-Page-v2.Pdf (accessed 2022-07-29). https://d1wqtxts1xzle7.cloudfront.net/37529848/capacitor-with-cover-page-v2.pdf [Google Scholar]
- Kebede A.A., Kalogiannis T., Van Mierlo J., Berecibar M. (2022) A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration, Renew. Sust. Energ. Rev. 159, 112213, https://doi.org/10.1016/j.rser.2022.112213. [CrossRef] [Google Scholar]
- Park K., Zhang Z. (2013) Fundamentals and applications of near-field radiative energy transfer, Front. Heat Mass Transf. 4, 1, 013001. [CrossRef] [Google Scholar]
- Duigou Le (2000) A. La filière hydrogène Un moyen de stockage de l’énergie (accessed 2020-08-25). https://hal.archives-ouvertes.fr/hal-02416323/file/201500004533.pdf [Google Scholar]
- Momirlan M., Veziroglu T.N. (2005) The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, Int. J. Hydrogen Energy 30, 7, 795–802. https://doi.org/10.1016/j.ijhydene.2004.10.011. [CrossRef] [Google Scholar]
- Abbasi T., Abbasi S.A. (2011) “Renewable” hydrogen: prospects and challenges, Renew. Sust. Energ. Rev. 15, 6, 3034–3040. https://doi.org/10.1016/j.rser.2011.02.026. [CrossRef] [Google Scholar]
- Holbrook J.H., Cialone H.J., Collings E.W., Drauglis E.J., Scott P.M., Mayfield M.E. (2012) 5 – Control of hydrogen embrittlement of metals by chemical inhibitors and coatings, in: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Vol. 1, R.P. Gangloff, B.P. Somerday (eds.), Woodhead Publishing Series in Metals and Surface Engineering. Woodhead Publishing, pp. 129–153. https://doi.org/10.1533/9780857095374.1.129. [CrossRef] [Google Scholar]
- Holbrook J.H., Cialone H.J., Scott P.M. (1984) Hydrogen Degradation of Pipeline Steels. Summary Report, Battelle Columbus Labs., BNL-51855, OH, USA (accessed 2020-03-04). https://www.osti.gov/biblio/5985541 [CrossRef] [Google Scholar]
- Veziroglu T.N. (2016) Metal-Hydrogen Systems: Proceedings of the Miami International Symposium on Metal-Hydrogen Systems, 13–15 April 1981, Miami Beach, Florida, USA, Elsevier. [Google Scholar]
- Gupta R.B. (2008) Hydrogen fuel: production, transport, and storage, CRC Press. [CrossRef] [Google Scholar]
- IEA. The Future of Hydrogen – Analysis. IEA (accessed 2021-01-22). https://www.iea.org/reports/the-future-of-hydrogen [Google Scholar]
- Christensen H., Bjergbakke E. (1982) Radiolysis of ground water from spent fuel. SKBF-KBS-TR–82-18, Svensk Kaernbraenslefoersoerjning AB (accessed 2020-06-30) http://inis.iaea.org/Search/search.aspx?orig_q=RN:14788675 [Google Scholar]
- Prinzhofer A., Tahara Cissé C.S., Diallo A.B. (2018) Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), Int. J. Hydrogen Energy 43, 42, 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193. [CrossRef] [Google Scholar]
- Stevens T.O., McKinley J.P. (2000) Abiotic controls on H2 production from Basalt−Water reactions and implications for aquifer biogeochemistry, Environ. Sci. Technol. 34, 5, 826–831. https://doi.org/10.1021/es990583g. [CrossRef] [Google Scholar]
- Hosseini S.E., Wahid M.A. (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development, Renew. Sust. Energ. Rev. 57, 850–866. https://doi.org/10.1016/j.rser.2015.12.112. [CrossRef] [Google Scholar]
- Cao L., Yu I.K.M., Xiong X., Tsang D.C.W., Zhang S., Clark J.H., Hu C., Ng Y.H., Shang J., Ok Y.S. (2020) Biorenewable hydrogen production through biomass gasification: a review and future prospects, Environ. Res. 186, 109547. https://doi.org/10.1016/j.envres.2020.109547. [CrossRef] [Google Scholar]
- Sengodan S., Lan R., Humphreys J., Du D., Xu W., Wang H., Tao S. (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications, Renew. Sust. Energ. Rev. 82, 761–780. https://doi.org/10.1016/j.rser.2017.09.071. [CrossRef] [Google Scholar]
- Kothari R., Buddhi D., Sawhney R.L. (2008) Comparison of environmental and economic aspects of various hydrogen production methods, Renew. Sust. Energ. Rev. 12, 2, 553–563. https://doi.org/10.1016/j.rser.2006.07.012. [CrossRef] [Google Scholar]
- Baruah R., Dixit M., Basarkar P., Parikh D., Bhargav A. (2015) Advances in ethanol autothermal reforming, Renew. Sust. Energ. Rev. 51, 1345–1353. https://doi.org/10.1016/j.rser.2015.07.060. [CrossRef] [Google Scholar]
- da Silva Veras T., Mozer T.S., da Costa Rubim Messeder dos Santos D., da Silva César A. (2017) Hydrogen: trends, production and characterization of the main process worldwide, Int. J. Hydrogen Energy 42, 4, 2018–2033. https://doi.org/10.1016/j.ijhydene.2016.08.219.. [CrossRef] [Google Scholar]
- Muradov N.Z. (1993) How to produce hydrogen from fossil fuels without CO2 emission, Int. J. Hydrogen Energy 18, 3, 211–215. https://doi.org/10.1016/0360-3199(93)90021-2. [CrossRef] [Google Scholar]
- Methane splitting and turquoise ammonia – Ammonia Energy Association (accessed 2022-08-03). https://www.ammoniaenergy.org/articles/methane-splitting-and-turquoise-ammonia/ [Google Scholar]
- Machhammer O., Bode A., Hormuth W. (2016) Financial and ecological evaluation of hydrogen production processes on large scale, Chem. Eng. Technol. 39, 6, 1185–1193. https://doi.org/10.1002/ceat.201600023. [CrossRef] [Google Scholar]
- 1 Scale up BASF.Pdf (accessed 2022-08-03). https://arpa-e.energy.gov/sites/default/files/1%20Scale%20up%20BASF.pdf. [Google Scholar]
- Keller M. (2021) Comment on “Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy”, Ind. Eng. Chem. Res. 60, 48, 17792–17794. https://doi.org/10.1021/acs.iecr.1c03926. [CrossRef] [Google Scholar]
- Chisholm G., Cronin L. (2016) Chapter 16 – Hydrogen from water electrolysis, in Storing Energy, T.M. Letcher (ed.), Oxford, Elsevier, pp. 315–343. https://doi.org/10.1016/B978-0-12-803440-8.00016-6 [CrossRef] [Google Scholar]
- Smolinka T., Bergmann H., Garche J., Kusnezoff M. (2022) Chapter 4 – The history of water electrolysis from its beginnings to the present, in Electrochemical Power Sources: Fundamentals, Systems, and Applications, T. Smolinka, J. Garche (eds.), Elsevier, pp. 83–164. https://doi.org/10.1016/B978-0-12-819424-9.00010-0 [CrossRef] [Google Scholar]
- Ursua A., Gandia L.M., Sanchis P. (2012) Hydrogen production from water electrolysis: current status and future trends, Proc. IEEE 100, 2, 410–426. https://doi.org/10.1109/JPROC.2011.2156750. [CrossRef] [Google Scholar]
- IEA. Electrolysers – Analysis. IEA (accessed 2023-01-11). https://www.iea.org/reports/electrolysers [Google Scholar]
- Zeng K., Zhang D. (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36, 3, 307–326. https://doi.org/10.1016/j.pecs.2009.11.002. [CrossRef] [Google Scholar]
- Sahu A.K., Pitchumani S., Sridhar P., Shukla A.K. (2009) Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview, Bull. Mater Sci. 32, 3, 285–294. https://doi.org/10.1007/s12034-009-0042-8. [CrossRef] [Google Scholar]
- Vincent I., Bessarabov D. (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review, Renew. Sust. Energ. Rev. 81, 1690–1704. https://doi.org/10.1016/j.rser.2017.05.258. [CrossRef] [Google Scholar]
- Bockris J.O’M., Conway B.E., Yeager E., White R.E. (1981) Electrochemical processing, in: Comprehensive Treatise of Electrochemistry, Vol. 2, Plenum Press, New York, London. BBPCAX. Berichte der Bunsengesellschaft für physikalische Chemie. Ber. Bunsenges. Phys. Chem. 1982, 86 (6), 575–576. https://doi.org/10.1002/bbpc.19820860631 [Google Scholar]
- Holladay J.D., Hu J., King D.L., Wang Y. (2009) An overview of hydrogen production technologies, Catal. Today 139, 4, 244–260. https://doi.org/10.1016/j.cattod.2008.08.039. [CrossRef] [Google Scholar]
- Nechache A., Hody S. (2021) Alternative and innovative solid oxide electrolysis cell materials: a short review, Renew. Sust. Energ. Rev. 149, 111322. https://doi.org/10.1016/j.rser.2021.111322. [CrossRef] [Google Scholar]
- Seitz M., von Storch H., Nechache A., Bauer D. (2017) Techno economic design of a solid oxide electrolysis system with solar thermal steam supply and thermal energy storage for the generation of renewable hydrogen, Int. J. Hydrogen Energy 42, 42, 26192–26202. https://doi.org/10.1016/j.ijhydene.2017.08.192. [CrossRef] [Google Scholar]
- Zheng H., Sullivan C., Mereddy R., Zeng R., Duke M., Clarke W. (2021) Production of bio-hydrogen using a membrane anaerobic reactor: limitations due to diffusion. [Google Scholar]
- Lee H.-S., Salerno M.B., Rittmann B.E. (2008) Thermodynamic evaluation on H2 production in glucose fermentation, Environ. Sci. Technol. 42, 7, 2401–2407. https://doi.org/10.1021/es702610v. [CrossRef] [PubMed] [Google Scholar]
- Bshish A., Yaakob Z., Narayanan B., Ramakrishnan R., Ebshish A. (2011) Steam-reforming of ethanol for hydrogen production, Chemical Papers 65, 3, 251–266. https://doi.org/10.2478/s11696-010-0100-0. [CrossRef] [Google Scholar]
- Fahmy T.Y.A., Fahmy Y., Mobarak F., El-Sakhawy M., Abou-Zeid R.E. (2020) Biomass pyrolysis: past, present, and future, Environ. Dev. Sustain. 22, 1, 17–32. https://doi.org/10.1007/s10668-018-0200-5. [CrossRef] [Google Scholar]
- Demirbas A. (2008) Hydrogen production from carbonaceous solid wastes by steam reforming, Energy Sources A: Recovery Util. Environ. Eff. 30, 10, 924–931. https://doi.org/10.1080/10826070601082658. [CrossRef] [Google Scholar]
- Calzavara Y., Joussot-Dubien C., Boissonnet G., Sarrade S. (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production, Energy Convers. Manage. 46, 4, 615–631. https://doi.org/10.1016/j.enconman.2004.04.003. [CrossRef] [Google Scholar]
- Oni A.O., Anaya K., Giwa T., Di Lullo G., Kumar A. (2022) Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions, Energy Convers. Manage. 254, 115245. https://doi.org/10.1016/j.enconman.2022.115245. [CrossRef] [Google Scholar]
- Bartels J.R., Pate M.B., Olson N.K. (2010) An economic survey of hydrogen production from conventional and alternative energy sources, Int. J. Hydrogen Energy 35, 16, 8371–8384. https://doi.org/10.1016/j.ijhydene.2010.04.035. [CrossRef] [Google Scholar]
- Kreutz T., Williams R., Consonni S., Chiesa P. (2005) Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B: economic analysis, Int. J. Hydrogen Energy 30, 7, 769–784. https://doi.org/10.1016/j.ijhydene.2004.08.001. [CrossRef] [Google Scholar]
- Simbeck D.R. (2005) Hydrogen costs with CO2 capture, in Greenhouse Gas Control Technologies, Vol. 7, E.S. Rubin, D.W. Keith, C.F. Gilboy, M. Wilson, T. Morris, J. Gale, K. Thambimuthu (eds.), Elsevier Science Ltd, Oxford, pp. 1059–1066. https://doi.org/10.1016/B978-008044704-9/50108-7. [CrossRef] [Google Scholar]
- Damen K., van Troost M., Faaij A., Turkenburg W. (2006) A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies, Prog. Energy Combust. Sci. 32, 2, 215–246. https://doi.org/10.1016/j.pecs.2005.11.005. [CrossRef] [Google Scholar]
- Levene J., Kroposki B., Sverdrup G. (2006) Wind energy and production of hydrogen and electricity – opportunities for renewable hydrogen, in: Preprint: 2006 POWER-GEN Renewable Energy and Fuels Technical Conference, Las Vegas, Nevada, p. 18. [Google Scholar]
- Olateju B., Kumar A. (2016) A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands, Energy 115, 604–614. https://doi.org/10.1016/j.energy.2016.08.101. [CrossRef] [Google Scholar]
- El-Emam R.S., Özcan H. (2019) Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production, J. Clean. Prod. 220, 593–609. https://doi.org/10.1016/j.jclepro.2019.01.309. [CrossRef] [Google Scholar]
- Padro C.E.G., Putsche V. (1999) Survey of the economics of hydrogen technologies, Technical Report. NREL/TP-570-27079 (NREL), 12212, National Renewable Energy Lab, Golden, CO (United States). https://doi.org/https://doi.org/10.2172/12212. [CrossRef] [Google Scholar]
- Sathyaprakasan P., Kannan G. (2015) BITS Pilani-Dubai Campus Dubai. Economics of bio-hydrogen production, IJESD 6, 4, 352–356. https://doi.org/10.7763/IJESD.2015.V6.617. [CrossRef] [Google Scholar]
- Al-Qahtani A., Parkinson B., Hellgardt K., Shah N., Guillen-Gosalbez G. (2021) Uncovering the true cost of hydrogen production routes using life cycle monetisation, Appl. Energy 281, 115958. https://doi.org/10.1016/j.apenergy.2020.115958. [CrossRef] [Google Scholar]
- Air Liquide (2023) Encyclopédie des gaz Air Liquide, Gas Encyclopedia (accessed 2022-08-05) https://encyclopedia.airliquide.com/fr [Google Scholar]
- von Helmolt R., Eberle U. (2007) Fuel cell vehicles: status 2007, J. Power Sourc. 165, 2, 833–843. https://doi.org/10.1016/j.jpowsour.2006.12.073. [CrossRef] [Google Scholar]
- Pasman H.J., Rogers W.J. (2012) Risk assessment by means of bayesian networks: a comparative study of compressed and liquefied H2 transportation and tank station risks, Int. J. Hydrogen Energy 37, 22, 17415–17425. https://doi.org/10.1016/j.ijhydene.2012.04.051. [CrossRef] [Google Scholar]
- Hua T.Q., Ahluwalia R.K., Peng J.-K., Kromer M., Lasher S., McKenney K., Law K., Sinha J. (2011) Technical assessment of compressed hydrogen storage tank systems for automotive applications, Int. J. Hydrogen Energy 36, 4, 3037–3049. https://doi.org/10.1016/j.ijhydene.2010.11.090. [CrossRef] [Google Scholar]
- Parks G., Boyd R., Cornish J., Remick R. (2014) Hydrogen station compression, storage, and dispensing technical status and costs: systems integration, National Renewable Energy Lab (NREL), United States. https://doi.org/10.2172/1130621 [Google Scholar]
- Air Liquide Energies (2023) Comment stocker l’hydrogène ? Air Liquide Energies (accessed 2022-08-05). https://energies.airliquide.com/fr/mediatheque-planete-hydrogene/comment-stocker-lhydrogene [Google Scholar]
- Aasadnia M., Mehrpooya M. (2018) Large-scale liquid hydrogen production methods and approaches: a review, Appl. Energy 212, 57–83. https://doi.org/10.1016/j.apenergy.2017.12.033. [CrossRef] [Google Scholar]
- Bliesner R.M. (2013) Parahydrogen-orthohydrogen conversion for boil-off reduction from space stage fuel systems. Masters of Science in Mechanical Engineering, Washington State University, p. 49. [Google Scholar]
- Tzimas E., Filiou C., Peteves S., Veyret J. (2003) Hydrogen storage: state-of-the-art and future perspective, EUR 20995 EN. Cat. No. LD-NA-20995-EN-C; 2003. JRC26493. [Google Scholar]
- Makridis S. (2016) Hydrogen storage and compression, Chem. Phys. 1–28. https://doi.org/10.1049/PBPO101E_ch1. [Google Scholar]
- Peschka W. (1984) Liquid hydrogen as a vehicular fuel – a challenge for cryogenic engineering, Int. J. Hydrogen Energy 9, 6, 515–523. https://doi.org/10.1016/0360-3199(84)90104-6. [CrossRef] [Google Scholar]
- Stewart W.F. (1984) Operating experience with a liquid-hydrogen fueled buick and refueling system, Int. J. Hydrogen Energy 9, 6, 525–538. https://doi.org/10.1016/0360-3199(84)90105-8. [CrossRef] [Google Scholar]
- Furuhama S., Kobayashi Y. (1984) Development of a Hot-Surface-Ignition Hydrogen Injection Two-Stroke Engine, Int. J. Hydrogen Energy 9, 3, 205–213. https://doi.org/10.1016/0360-3199(84)90120-4. [CrossRef] [Google Scholar]
- Hassannayebi N., Azizmohammadi S., De Lucia M., Ott H. (2019) Underground hydrogen storage: application of geochemical modelling in a case study in the Molasse Basin, Upper Austria, Environ. Earth Sci. 78, 5, 177. https://doi.org/10.1007/s12665-019-8184-5. [CrossRef] [Google Scholar]
- Zivar D., Kumar S., Foroozesh J. (2021) Underground hydrogen storage: a comprehensive review, Int. J. Hydrogen Energy 46, 45, 23436–23462. https://doi.org/10.1016/j.ijhydene.2020.08.138. [CrossRef] [Google Scholar]
- Michalski J., Bünger U., Crotogino F., Donadei S., Schneider G.-S., Pregger T., Cao K.-K., Heide D. (2017) Hydrogen generation by electrolysis and storage in salt caverns: potentials, economics and systems aspects with regard to the German energy transition, Int. J. Hydrogen Energy 42, 19, 13427–13443. https://doi.org/10.1016/j.ijhydene.2017.02.102. [CrossRef] [Google Scholar]
- Commissariat général au développement durable (2021) Bilan énergétique de la France, Chiffres clés de l’énergie – Édition 2021 (accessed 2022-08-10). https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-energie-2021/6-bilan-energetique-de-la-france.php [Google Scholar]
- Zhou L. (2005) Progress and problems in hydrogen storage methods, Renew. Sust. Energ. Rev. 9, 4, 395–408. https://doi.org/10.1016/j.rser.2004.05.005. [CrossRef] [Google Scholar]
- Ansón A., Benham M., Jagiello J., Callejas M.A., Benito A.M., Maser W.K., Züttel A., Sudan P., Martínez M.T. (2004) Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques, Nanotechnology 15, 11, 1503–1508. https://doi.org/10.1088/0957-4484/15/11/023. [CrossRef] [Google Scholar]
- Zhou L., Zhou Y., Sun Y. (2004) Enhanced storage of hydrogen at the temperature of liquid nitrogen, Int. J. Hydrogen Energy 29, 3, 319–322. https://doi.org/10.1016/S0360-3199(03)00155-1. [CrossRef] [Google Scholar]
- Chen P., Wu X., Lin J., Tan K.L. (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science 285, 5424, 91–93. https://doi.org/10.1126/science.285.5424.91. [CrossRef] [PubMed] [Google Scholar]
- Yang R.T. (2000) Hydrogen storage by alkali-doped carbon nanotubes – revisited, Carbon 38, 4, 623–626. https://doi.org/10.1016/S0008-6223(99)00273-0. [CrossRef] [Google Scholar]
- Tibbetts G.G., Meisner G.P., Olk C.H. (2001) Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon 39, 15, 2291–2301. https://doi.org/10.1016/S0008-6223(01)00051-3. [CrossRef] [Google Scholar]
- Liu C., Chen Y., Wu C.-Z., Xu S.-T., Cheng H.-M. (2010) Hydrogen Storage in Carbon Nanotubes Revisited, Carbon 48 2, 452–455. https://doi.org/10.1016/j.carbon.2009.09.060. [CrossRef] [Google Scholar]
- Zhao W., Fierro V., Fernández-Huerta N., Izquierdo M.T., Celzard A. (2012) Impact of synthesis conditions of KOH activated carbons on their hydrogen storage capacities, Int. J. Hydrogen Energy 37, 19, 14278–14284. https://doi.org/10.1016/j.ijhydene.2012.06.110. [CrossRef] [Google Scholar]
- Kolesnikov A.I., Antonov V.E., Bashkin I.O., Li J.C., Moravsky A.P., Ponyatovsky E.G., Tomkinson J. (1999) Neutron spectroscopy of fullerite hydrogenated under high pressures, Phys. B Condens. Matter 263–264, 436–438. https://doi.org/10.1016/S0921-4526(98)01403-3. [CrossRef] [Google Scholar]
- Liu C., Fan Y.Y., Liu M., Cong H.T., Cheng H.M., Dresselhaus M.S. (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 286, 5442, 1127–1129. https://doi.org/10.1126/science.286.5442.1127. [CrossRef] [PubMed] [Google Scholar]
- Ramimoghadam D., Gray E.M., Webb C.J. (2016) Review of polymers of intrinsic microporosity for hydrogen storage applications, Int. J. Hydrogen Energy 41, 38, 16944–16965. https://doi.org/10.1016/j.ijhydene.2016.07.134. [CrossRef] [Google Scholar]
- McKeown N.B., Gahnem B., Msayib K.J., Budd P.M., Tattershall C.E., Mahmood K., Tan S., Book D., Langmi H.W., Walton A. (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity, Angewandte Chemie 118, 11, 1836–1839. https://doi.org/10.1002/ange.200504241. [CrossRef] [Google Scholar]
- Tian M., Rochat S., Polak-Kraśna K., Holyfield L.T., Burrows A.D., Bowen C.R., Mays T.J. (2019) Nanoporous polymer-based composites for enhanced hydrogen storage, Adsorption 25, 4, 889–901. https://doi.org/10.1007/s10450-019-00065-x. [CrossRef] [Google Scholar]
- Côté A.P., Benin A.I., Ockwig N.W., O’Keeffe M., Matzger A.J., Yaghi O.M. (2005) Porous, crystalline, covalent organic frameworks, Science 310, 5751, 1166–1170. https://doi.org/10.1126/science.1120411. [CrossRef] [PubMed] [Google Scholar]
- Freund R., Zaremba O., Arnauts G., Ameloot R., Skorupskii G., Dincă M., Bavykina A., Gascon J., Ejsmont A., Goscianska J., Kalmutzki M., Lächelt U., Ploetz E., Diercks C.S., Wuttke S. (2021) The current status of MOF and COF applications, Angew. Chem. Int. Ed. 60, 45, 23975–24001. https://doi.org/10.1002/anie.202106259. [CrossRef] [PubMed] [Google Scholar]
- Han S.S., Furukawa H., Yaghi O.M., Goddard W.A. (2008) Covalent organic frameworks as exceptional hydrogen storage materials, J. Am. Chem. Soc. 130, 35, 11580–11581. https://doi.org/10.1021/ja803247y. [CrossRef] [PubMed] [Google Scholar]
- Klontzas E., Tylianakis E., Froudakis G.E. (2010) Designing 3D COFs with enhanced hydrogen storage capacity, Nano Lett. 10, 2, 452–454. https://doi.org/10.1021/nl903068a. [CrossRef] [PubMed] [Google Scholar]
- Pramudya Y., Mendoza-Cortes J.L. (2016) Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0–700 Bar at 298 K, J. Am. Chem. Soc. 138, 46, 15204–15213. https://doi.org/10.1021/jacs.6b08803. [CrossRef] [PubMed] [Google Scholar]
- Shet S.P., Shanmuga Priya S., Sudhakar K., Tahir M. (2021) A review on current trends in potential use of metal-organic framework for hydrogen storage, Int. J. Hydrogen Energy 46, 21, 11782–11803. https://doi.org/10.1016/j.ijhydene.2021.01.020. [CrossRef] [Google Scholar]
- Grünker R., Bon V., Müller P., Stoeck U., Krause S., Mueller U., Senkovska I., Kaskel S. (2014) A New Metal-Organic Framework with Ultra-High Surface Area, Chem. Commun. 50, 26, 3450–3452. https://doi.org/10.1039/C4CC00113C. [CrossRef] [PubMed] [Google Scholar]
- Campesi R., Cuevas F., Latroche M., Hirscher M. (2010) Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks – revisited, Phys. Chem. Chem. Phys. 12, 35, 10457–10459. https://doi.org/10.1039/C0CP00037J. [CrossRef] [PubMed] [Google Scholar]
- Luzan S.M., Talyzin A.V. (2010) Hydrogen adsorption in Pt catalyst/MOF-5 materials, Microporous Mesoporous Mater. 135, 1, 201–205. https://doi.org/10.1016/j.micromeso.2010.07.018. [CrossRef] [Google Scholar]
- Prins R. (2012) Hydrogen spillover. Facts and fiction, Chem. Rev. 112, 5, 2714–2738. https://doi.org/10.1021/cr200346z. [CrossRef] [PubMed] [Google Scholar]
- Barrer R.M. (1978) Zeolites and clay minerals as sorbents and molecular sieves, Academic Press (accessed 2022-08-23). https://scholar.google.com/scholar_lookup?title=Zeolites+and+clay+minerals+as+sorbents+and+molecular+sieves&author=Barrer%2C+R.+M.+%28Richard+Maling%29&publication_year=1978 [Google Scholar]
- Fraenkel D., Shabtai J. (1977) Encapsulation of hydrogen in molecular sieve zeolites, J. Am. Chem. Soc. 99, 21, 7074–7076. https://doi.org/10.1021/ja00463a058. [CrossRef] [Google Scholar]
- Weitkamp J., Fritz M., Ernst S. (1995) Zeolites as media for hydrogen storage, Int. J. Hydrogen Energy 20, 12, 967–970. https://doi.org/10.1016/0360-3199(95)00058-L. [CrossRef] [Google Scholar]
- Nishimiya N., Kishi T., Mizushima T., Matsumoto A., Tsutsumi K. (2001) Hyperstoichiometric hydrogen occlusion by palladium nanoparticles included in NaY zeolite, J. Alloys Compd. 319, 1, 312–321. https://doi.org/10.1016/S0925-8388(01)00921-5. [CrossRef] [Google Scholar]
- Langmi H.W., Book D., Walton A., Johnson S.R., Al-Mamouri M.M., Speight J.D., Edwards P.P., Harris I.R., Anderson P.A. (2005) Hydrogen storage in ion-exchanged zeolites, J. Alloys Compd. 404–406, 637–642. https://doi.org/10.1016/j.jallcom.2004.12.193. [CrossRef] [Google Scholar]
- Vitillo J.G., Ricchiardi G., Spoto G., Zecchina A. (2005) Theoretical maximal storage of hydrogen in zeolitic frameworks, Phys. Chem. Chem. Phys. 7, 23, 3948–3954. https://doi.org/10.1039/B510989B. [CrossRef] [PubMed] [Google Scholar]
- Veluswamy H.P., Kumar R., Linga P. (2014) Hydrogen storage in clathrate hydrates: current state of the art and future directions, Appl. Energy 122, 112–132. https://doi.org/10.1016/j.apenergy.2014.01.063. [CrossRef] [Google Scholar]
- Mao W.L., Mao H. (2004) Hydrogen storage in molecular compounds, Proceedings of the National Academy of Sciences 101, 3, 708–710. https://doi.org/10.1073/pnas.0307449100 [CrossRef] [PubMed] [Google Scholar]
- Vos W.L., Finger L.W., Hemley R.J., Mao H. (1993) Novel H2–H2O clathrates at high pressures, Phys. Rev. Lett. 71, 19, 3150–3153. https://doi.org/10.1103/PhysRevLett.71.3150. [CrossRef] [PubMed] [Google Scholar]
- Lee H., Lee J., Kim D.Y., Park J., Seo Y.-T., Zeng H., Moudrakovski I.L., Ratcliffe C.I., Ripmeester J.A. (2005) Tuning clathrate hydrates for hydrogen storage, Nature 434, 7034, 743–746. https://doi.org/10.1038/nature03457. [CrossRef] [PubMed] [Google Scholar]
- Feucht K., Hurich W., Komoschinski N., Povei R. (1988) Hydrogen drive for road vehicles-results from the fleet test run in Berlin, Int. J. Hydrogen Energy 13, 4, 243–250. https://doi.org/10.1016/0360-3199(88)90092-4. [CrossRef] [Google Scholar]
- Zaluska A., Zaluski L., Ström-Olsen J.O. (2001) Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Appl. Phys. A 72, 2, 157–165. https://doi.org/10.1007/s003390100783. [CrossRef] [Google Scholar]
- Dehouche Z., Djaozandry R., Huot J., Boily S., Goyette J., Bose T.K., Schulz R. (2000) Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride, J. Alloys Compd. 305, 1, 264–271. https://doi.org/10.1016/S0925-8388(00)00718-0. [CrossRef] [Google Scholar]
- Bloch J., Mintz M.H. (1997) Kinetics and mechanisms of metal hydrides formation – a review, J. Alloys Compd. 253–254, 529–541. https://doi.org/10.1016/S0925-8388(96)03070-8. [CrossRef] [Google Scholar]
- Reilly J.J., Wiswall R.H. (1974) Formation and properties of iron titanium hydride, Inorg. Chem. 13, 1, 218–222. https://doi.org/10.1021/ic50131a042. [CrossRef] [Google Scholar]
- Sakaguchi H., Tsujimoto T., Adachi G. (1995) The confinement of hydrogen in LaNi5 by poisoning of the hydride surface, J. Alloys Compd. 223, 1, 122–126. https://doi.org/10.1016/0925-8388(94)01489-2. [CrossRef] [MathSciNet] [Google Scholar]
- Myhra S., Kisi E.H., Gray E.M. (1995) A surface analytical study of SO2 stabilisation of LaNi5Hx surfaces, J. Alloys Compd. 224, 2, 305–315. https://doi.org/10.1016/0925-8388(95)01535-3. [CrossRef] [Google Scholar]
- Tarasov B.P., Fursikov P.V., Volodin A.A., Bocharnikov M.S., Shimkus Y.Y., Kashin A.M., Yartys V.A., Chidziva S., Pasupathi S., Lototskyy M.V. (2021) Metal hydride hydrogen storage and compression systems for energy storage technologies, Int. J. Hydrogen Energy 46, 25, 13647–13657. https://doi.org/10.1016/j.ijhydene.2020.07.085. [CrossRef] [Google Scholar]
- Rusman N.A.A., Dahari M. (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy 41, 28, 12108–12126. https://doi.org/10.1016/j.ijhydene.2016.05.244. [CrossRef] [Google Scholar]
- Okada M., Kuriiwa T., Kamegawa A., Takamura H. (2002) Role of intermetallics in hydrogen storage materials, Mater. Sci. Eng. A 329–331, 305–312. https://doi.org/10.1016/S0921-5093(01)01580-5. [CrossRef] [Google Scholar]
- Principi G., Agresti F., Maddalena A., Lo Russo S. (2009) The problem of solid state hydrogen storage, Energy 34, 12, 2087–2091. https://doi.org/10.1016/j.energy.2008.08.027. [CrossRef] [Google Scholar]
- Gasiorowski A., Iwasieczko W., Skoryna D., Drulis H., Jurczyk M. (2004) Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd. 364 1, 283–288. https://doi.org/10.1016/S0925-8388(03)00544-9. [CrossRef] [Google Scholar]
- Jain I.P., Lal C., Jain A. (2010) Hydrogen storage in Mg: a most promising material, Int. J. Hydrogen Energy 35, 10, 5133–5144. https://doi.org/10.1016/j.ijhydene.2009.08.088. [CrossRef] [Google Scholar]
- Mushnikov N.V., Ermakov A.E., Uimin M.A., Gaviko V.S., Terent’ev P.B., Skripov A.V., Tankeev A.P., Soloninin A.V., Buzlukov A.L. (2006) Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen, Phys. Metals Metallogr. 102, 4, 421–431. https://doi.org/10.1134/S0031918X06100097. [CrossRef] [Google Scholar]
- Liang G., Huot J., Boily S., Van Neste A., Schulz R. (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd. 292, 1, 247–252. https://doi.org/10.1016/S0925-8388(99)00442-9. [CrossRef] [Google Scholar]
- Sadhasivam T., Kim H.-T., Jung S., Roh S.-H., Park J.-H., Jung H.-Y. (2017) Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review, Renew. Sust. Energ. Rev. 72, 523–534. https://doi.org/10.1016/j.rser.2017.01.107. [CrossRef] [Google Scholar]
- Shao H., Xin G., Zheng J., Li X., Akiba E. (2012) Nanotechnology in Mg-based materials for hydrogen storage, Nano Energy 1, 4, 590–601. https://doi.org/10.1016/j.nanoen.2012.05.005. [CrossRef] [Google Scholar]
- Fichtner M. (2009) Properties of nanoscale metal hydrides, Nanotechnology 20, 20, 204009. https://doi.org/10.1088/0957-4484/20/20/204009. [CrossRef] [PubMed] [Google Scholar]
- Vajo J.J. (2011) Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides, Curr. Opin. Solid State Mater. Sci. 15, 2, 52–61. https://doi.org/10.1016/j.cossms.2010.11.001. [CrossRef] [Google Scholar]
- Lai Q., Wang T., Sun Y., Aguey-Zinsou K.-F. (2018) Rational design of nanosized light elements for hydrogen storage: classes, synthesis, characterization, and properties, Adv. Mater. Technol. 3, 9, 1700298. https://doi.org/10.1002/admt.201700298. [CrossRef] [Google Scholar]
- Zhao-Karger Z., Hu J., Roth A., Wang D., Kübel C., Lohstroh W., Fichtner M. (2010) Altered Thermodynamic and Kinetic Properties of MgH2 Infiltrated in Microporous Scaffold, Chem. Commun. 46, 44, 8353–8355. https://doi.org/10.1039/C0CC03072D. [CrossRef] [PubMed] [Google Scholar]
- He T., Cao H., Chen P. (2019) Complex hydrides for energy storage, conversion, and utilization, Adv. Mater. 31, 50, 1902757. https://doi.org/10.1002/adma.201902757. [CrossRef] [Google Scholar]
- Tanaka H., Tokoyoda K., Matsumoto M., Suzuki Y., Kiyobayashi T., Kuriyama N. (2009) Hazard assessment of complex hydrides as hydrogen storage materials, Int. J. Hydrogen Energy 34, 7, 3210–3218. https://doi.org/10.1016/j.ijhydene.2009.01.064. [CrossRef] [Google Scholar]
- Urgnani J., Torres F.J., Palumbo M., Baricco M. (2008) Hydrogen release from solid state NaBH4, Int. J. Hydrogen Energy 33, 12, 3111–3115. https://doi.org/10.1016/j.ijhydene.2008.03.031. [CrossRef] [Google Scholar]
- Bogdanović B., Schwickardi M. (1997) Ti-Doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloys Compd. 253–254, 1–9. https://doi.org/10.1016/S0925-8388(96)03049-6. [CrossRef] [Google Scholar]
- Pohlmann C., Röntzsch L., Hu J., Weißgärber T., Kieback B., Fichtner M. (2012) Tailored heat transfer characteristics of pelletized LiNH2–MgH2 and NaAlH4 hydrogen storage materials, J. Power Sourc. 205, 173–179. https://doi.org/10.1016/j.jpowsour.2012.01.064. [CrossRef] [Google Scholar]
- Züttel A., Wenger P., Rentsch S., Sudan P., Mauron Ph, Emmenegger Ch (2003) LiBH4 a new hydrogen storage material, J. Power Sourc. 118, 1–7. https://doi.org/10.1016/S0378-7753(03)00054-5. [CrossRef] [Google Scholar]
- Chen P., Xiong Z., Luo J., Lin J., Tan K.L. (2002) Interaction of hydrogen with metal nitrides and imides, Nature 420, 6913, 302–304. https://doi.org/10.1038/nature01210. [CrossRef] [PubMed] [Google Scholar]
- Chandra M., Xu Q. (2006) A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane, J. Power Sourc. 156, 2, 190–194. https://doi.org/10.1016/j.jpowsour.2005.05.043. [CrossRef] [Google Scholar]
- Hua T.Q., Ahluwalia R.K. (2012) Off-board regeneration of ammonia borane for use as a hydrogen carrier for automotive fuel cells, Int. J. Hydrogen Energy 37, 19, 14382–14392. https://doi.org/10.1016/j.ijhydene.2012.07.013. [CrossRef] [Google Scholar]
- Ramachandran P.V., Gagare P.D. (2007) Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration, Inorg. Chem. 46, 19, 7810–7817. https://doi.org/10.1021/ic700772a. [CrossRef] [PubMed] [Google Scholar]
- Al-Kukhun A., Hwang H.T., Varma A. (2013) Mechanistic studies of ammonia borane dehydrogenation, Int. J. Hydrogen Energy 38, 1, 169–179. https://doi.org/10.1016/j.ijhydene.2012.09.161. [CrossRef] [Google Scholar]
- Baitalow F., Baumann J., Wolf G., Jaenicke-Rößler K., Leitner G. (2002) Thermal decomposition of B-N–H compounds investigated by using combined thermoanalytical methods, Thermochim. Acta 391, 1, 159–168. https://doi.org/10.1016/S0040-6031(02)00173-9. [CrossRef] [Google Scholar]
- Frueh S., Kellett R., Mallery C., Molter T., Willis W.S., King’ondu C., Suib S.L. (2011) Pyrolytic decomposition of ammonia borane to boron nitride, Inorg. Chem. 50, 3, 783–792. https://doi.org/10.1021/ic101020k. [CrossRef] [PubMed] [Google Scholar]
- Zhang L., Xia G., Ge Y., Wang C., Guo Z., Li X., Yu X. (2015) Ammonia borane confined by nitrogen-containing carbon nanotubes: enhanced dehydrogenation properties originating from synergetic catalysis and nanoconfinement, J. Mater. Chem. A 3, 41, 20494–20499. https://doi.org/10.1039/C5TA05540G. [CrossRef] [Google Scholar]
- Bluhm M.E., Bradley M.G., Butterick R., Kusari U., Sneddon L.G. (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids, J. Am. Chem. Soc. 128, 24, 7748–7749. https://doi.org/10.1021/ja062085v. [CrossRef] [PubMed] [Google Scholar]
- Heldebrant D.J., Karkamkar A., Hess N.J., Bowden M., Rassat S., Zheng F., Rappe K., Autrey T. (2008) The effects of chemical additives on the induction phase in solid-state thermal decomposition of ammonia borane, Chem. Mater. 20, 16, 5332–5336. https://doi.org/10.1021/cm801253u. [CrossRef] [Google Scholar]
- Wahab M.A., Zhao H., Yao X.D. (2012) Nano-confined ammonia borane for chemical hydrogen storage, Front. Chem. Sci. Eng. 6, 1, 27–33. https://doi.org/10.1007/s11705-011-1171-3. [CrossRef] [Google Scholar]
- Owarzany R., Jaroń T., Leszczyński P.J., Fijalkowski K.J., Grochala W. (2017) Amidoboranes of rubidium and caesium: the last missing members of the alkali metal amidoborane family, Dalton Trans. 46, 46, 16315–16320. https://doi.org/10.1039/C7DT03590J. [CrossRef] [PubMed] [Google Scholar]
- Ramzan M., Silvearv F., Blomqvist A., Scheicher R.H., Lebègue S., Ahuja R. (2009) Structural and energetic analysis of the hydrogen storage materials LiNH2BH3 and NaNH2BH3 from ab initio calculations, Phys. Rev. B 79, 13, 132102. https://doi.org/10.1103/PhysRevB.79.132102. [CrossRef] [Google Scholar]
- Wu H., Zhou W., Yildirim T. (2008) Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties, J. Am. Chem. Soc. 130, 44, 14834–14839. https://doi.org/10.1021/ja806243f. [CrossRef] [PubMed] [Google Scholar]
- Freepik. Macrovecto, Freepik (accessed 2022-11-30). https://fr.freepik.com/auteur/macrovector [Google Scholar]
- Catalyst: NH3 as an Energy Carrier, Elsevier Enhanced Reader. https://doi.org/10.1016/j.chempr.2017.10.004. [Google Scholar]
- Ammoniac. Techniques de l’Ingénieur (accessed 2022-10-10). https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/fabrication-des-grands-produits-industriels-en-chimie-et-petrochimie-42319210/ammoniac-j6135/ [Google Scholar]
- 2014_ifa_ff_ammonia_emissions_july.Pdf (accessed 2022-10-10). https://www.fertilizer.org//images/Library_Downloads/2014_ifa_ff_ammonia_emissions_july.pdf [Google Scholar]
- Rafiqul I., Weber C., Lehmann B., Voss A. (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties, Energy 30, 13, 2487–2504. https://doi.org/10.1016/j.energy.2004.12.004. [CrossRef] [Google Scholar]
- Wang M., Khan M.A., Mohsin I., Wicks J., Ip A.H., Sumon K.Z., Dinh C.T., Sargent E.H., Gates I.D., Kibria M.G. (2021) Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?, Energy Environ. Sci. 14, 5, 2535–2548. https://doi.org/10.1039/D0EE03808C. [CrossRef] [Google Scholar]
- McEnaney J.M., Singh A.R., Schwalbe J.A., Kibsgaard J., Lin J.C., Cargnello M., Jaramillo T.F., Nørskov J.K. (2017) Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure, Energy Environ. Sci. 10, 7, 1621–1630. https://doi.org/10.1039/C7EE01126A. [CrossRef] [Google Scholar]
- Kunsman C.H. (1927) The decomposition of ammonia on iron catalysts, Science 65, 1691, 527–528. https://doi.org/10.1126/science.65.1691.527-a. [CrossRef] [PubMed] [Google Scholar]
- Kunsman C.H. (1929) The thermal decomposition of ammonia on iron catalysts II, J. Am. Chem. Soc. 51, 3, 688–695. https://doi.org/10.1021/ja01378a005. [CrossRef] [Google Scholar]
- Lamb K.E., Dolan M.D., Kennedy D.F. (2019) Ammonia for hydrogen storage; a review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrogen Energy 44, 7, 3580–3593. https://doi.org/10.1016/j.ijhydene.2018.12.024. [CrossRef] [Google Scholar]
- Makepeace J.W., He T., Weidenthaler C., Jensen T.R., Chang F., Vegge T., Ngene P., Kojima Y., de Jongh P.E., Chen P., David W.I.F. (2019) Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: recent progress, Int. J. Hydrogen Energy 44, 15, 7746–7767. https://doi.org/10.1016/j.ijhydene.2019.01.144. [CrossRef] [Google Scholar]
- Marakatti V.S., Gaigneaux E.M. (2020) Recent advances in heterogeneous catalysis for ammonia synthesis, ChemCatChem 12, 23, 5838–5857. https://doi.org/10.1002/cctc.202001141. [CrossRef] [Google Scholar]
- Chatterjee S., Parsapur R.K., Huang K.-W. (2021) Limitations of ammonia as a hydrogen energy carrier for the transportation sector, ACS Energy Lett. 6, 12, 4390–4394. https://doi.org/10.1021/acsenergylett.1c02189. [CrossRef] [Google Scholar]
- Wang W., Su C., Wu Y., Ran R., Shao Z. (2013) Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels, Chem. Rev. 113, 10, 8104–8151. https://doi.org/10.1021/cr300491e. [CrossRef] [PubMed] [Google Scholar]
- Methanol Industry Installed Capacity and Capital Expenditure (CapEx) Forecast by Region and Countries including details of All Active Plants, Planned and Announced Projects, 2021–2026. Market Research Reports & Consulting | GlobalData UK Ltd. (accessed 2022-10-18). https://www.globaldata.com/store/report/methanol-market-analysis/ [Google Scholar]
- Tian P., Wei Y., Ye M., Liu Z. (2015) Methanol to Olefins (MTO): from fundamentals to commercialization, ACS Catal. 5, 3, 1922–1938. https://doi.org/10.1021/acscatal.5b00007. [CrossRef] [Google Scholar]
- Boocock D.G.B. (March 30, 2004) Process for production of fatty acid methyl esters from fatty acid triglycerides. US6712867B1 (accessed 2022-11-30) https://patents.google.com/patent/US6712867B1/en [Google Scholar]
- Park H., Woo Y., Jung H.S., Kim G., Bae J.W., Park M.-J. (2021) Development of dimethyl ether synthesis processes using by-product gas from a steel-making plant: Single-vs. two-step processes, J. Clean. Prod. 326, 129367. https://doi.org/10.1016/j.jclepro.2021.129367. [CrossRef] [Google Scholar]
- Courty P., Travers C., Durand D., Forestière A., Chaumette P. (1987) Process for the preparation of catalysts comprising copper, zinc and aluminium, useful in the production of methanol from synthesis gas, EP0152314B1 August 12 (accessed 2022-11-30) https://patents.google.com/patent/EP0152314B1/en [Google Scholar]
- Magoon E. (1973) Production of Methanol. US3709919A January 9, 1973 (accessed 2022-11-30) https://patents.google.com/patent/US3709919A/en?oq=+Shell%2c+US+3709919%2c+1973+(E.F.+Magoon) [Google Scholar]
- Gallagher J.T., Kidd J.M. (1969) Methanol Synthesis. GB1159035A, July 23, 1969 (accessed 2022-11-30) https://patents.google.com/patent/GB1159035A/en?oq=GB+1159035 [Google Scholar]
- Schneider M.D.D.-C., Kochloefl K.D.D.-C., Ladebeck J.D.D.-C. (June 16, 1987.) Katalysator Für Die Methanolsynthese. EP0125689B1 June 16, 1987 (accessed 2022-11-30) https://patents.google.com/patent/EP0125689B1/en?oq=EP+0125689 [Google Scholar]
- Höppener R.H., Doesburg E.B.M., Scholten J.J.F. (1986) Preparation and characterization of stable copper/zinc oxide/alumina catalysts for methanol systhesis, Appl. Catal. 25, 1, 109–119. https://doi.org/10.1016/S0166-9834(00)81227-0. [CrossRef] [Google Scholar]
- Shamsul N.S., Kamarudin S.K., Rahman N.A., Kofli N.T. (2014) An overview on the production of bio-methanol as potential renewable energy, Renew. Sust. Energ. Rev. 33, 578–588. https://doi.org/10.1016/j.rser.2014.02.024. [CrossRef] [Google Scholar]
- Xie S., Zhang W., Lan X., Lin H. (2020) CO2 reduction to methanol in the liquid phase: a review, ChemSusChem 13, 23, 6141–6159. https://doi.org/10.1002/cssc.202002087. [CrossRef] [PubMed] [Google Scholar]
- Huff C.A., Sanford M.S. (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol, J. Am. Chem. Soc. 133, 45, 18122–18125. https://doi.org/10.1021/ja208760j. [CrossRef] [PubMed] [Google Scholar]
- Miller A.J.M., Heinekey D.M., Mayer J.M., Goldberg K.I. (2013) Catalytic disproportionation of formic acid to generate methanol, Angew. Chem. Int. Ed. Engl. 52, 14, 3981–3984. https://doi.org/10.1002/anie.201208470. [CrossRef] [PubMed] [Google Scholar]
- Kanega R., Onishi N., Tanaka S., Kishimoto H., Himeda Y. (2021) Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas-solid phase reaction, J. Am. Chem. Soc. 143, 3, 1570–1576. https://doi.org/10.1021/jacs.0c11927. [CrossRef] [PubMed] [Google Scholar]
- Sá S., Silva H., Brandão L., Sousa J.M., Mendes A. (2010) Catalysts for methanol steam reforming – a review, Appl. Catal. B Environ. 99, 1, 43–57. https://doi.org/10.1016/j.apcatb.2010.06.015. [CrossRef] [Google Scholar]
- Eberle U., Felderhoff M., Schüth F. (2009) Chemical and physical solutions for hydrogen storage, Angew. Chem. Int. Ed. 48, 36, 6608–6630. https://doi.org/10.1002/anie.200806293. [CrossRef] [PubMed] [Google Scholar]
- Hodoshima S., Arai H., Takaiwa S., Saito Y. (2003) Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle, Int. J. Hydrogen Energy 28, 11, 1255–1262. https://doi.org/10.1016/S0360-3199(02)00250-1. [CrossRef] [Google Scholar]
- Sultan O., Shaw H. (1975) Study of automotive storage of hydrogen using recyclable liquid chemical carriers [Catalytic Dehydrogenation of Naphthenes]; TEC-75/003, Government Research Lab., Exxon Research and Engineering Co., Linden, NJ, USA (accessed 2020-03-03). https://www.osti.gov/biblio/5000657 [Google Scholar]
- Taube M., Taube P. (1979) A liquid organic carrier of hydrogen as a fuel for automobiles; EIR–379, Eidgenoessisches Inst. fuer Reaktorforschung (accessed 2020-03-03) http://inis.iaea.org/Search/search.aspx?orig_q=RN:13652276 [Google Scholar]
- Grünenfelder N.F., Schucan ThH (1989) Seasonal storage of hydrogen in liquid organic hydrides: description of the second prototype vehicle, Int. J. Hydrogen Energy 14, 8, 579–586. https://doi.org/10.1016/0360-3199(89)90117-1. [CrossRef] [Google Scholar]
- He T., Pei Q., Chen P. (2015) Liquid organic hydrogen carriers, J. Energy Chem. 24, 5, 587–594. https://doi.org/10.1016/j.jechem.2015.08.007. [CrossRef] [Google Scholar]
- Züttel A. (2004) Hydrogen storage methods, Naturwissenschaften 91, 4, 157–172. https://doi.org/10.1007/s00114-004-0516-x. [CrossRef] [PubMed] [Google Scholar]
- Riha M. (2020) Hydrogenious LOHC Technologies GmbH, FUTURIUM – European Commission. https://ec.europa.eu/futurium/en/tech-society-2020/hydrogenious-lohc-technologies-gmbh (accessed 2022-11-02). [Google Scholar]
- Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. Energy.gov (accessed 2021-06-04). https://www.energy.gov/eere/fuelcells/downloads/target-explanation-document-onboard-hydrogen-storage-light-duty-fuel-cell [Google Scholar]
- Geburtig D., Preuster P., Bösmann A., Müller K., Wasserscheid P. (2016) Chemical utilization of hydrogen from fluctuating energy sources – catalytic transfer hydrogenation from charged liquid organic hydrogen carrier systems, Int. J. Hydrogen Energy 41, 2, 1010–1017. https://doi.org/10.1016/j.ijhydene.2015.10.013. [CrossRef] [Google Scholar]
- Teichmann D., Arlt W., Wasserscheid P. (2012) Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy, Int. J. Hydrogen Energy 37, 23, 18118–18132. https://doi.org/10.1016/j.ijhydene.2012.08.066. [CrossRef] [Google Scholar]
- Aakko-Saksa P.T., Cook C., Kiviaho J., Repo T. (2018) Liquid organic hydrogen carriers for transportation and storing of renewable energy – review and discussion, J. Power Sourc. 396, 803–823. https://doi.org/10.1016/j.jpowsour.2018.04.011. [CrossRef] [Google Scholar]
- Niermann M., Beckendorff A., Kaltschmitt M., Bonhoff K. (2019) Liquid Organic Hydrogen Carrier (LOHC) – assessment based on chemical and economic properties, Int. J. Hydrogen Energy 44, 13, 6631–6654. https://doi.org/10.1016/j.ijhydene.2019.01.199. [CrossRef] [Google Scholar]
- Modisha P.M., Ouma C.N.M., Garidzirai R., Wasserscheid P., Bessarabov D. (2019) The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers, Energy Fuels 33, 4, 2778–2796. https://doi.org/10.1021/acs.energyfuels.9b00296. [CrossRef] [Google Scholar]
- Rao P.C., Yoon M. (2020) Potential Liquid-Organic Hydrogen Carrier (LOHC) systems: a review on recent progress, Energies 13, 22, 6040. https://doi.org/10.3390/en13226040. [CrossRef] [Google Scholar]
- Cho J.-Y., Kim H., Oh J.-E., Park B.Y. (2021) Recent advances in homogeneous/heterogeneous catalytic hydrogenation and dehydrogenation for potential Liquid Organic Hydrogen Carrier (LOHC) systems, Catalysts 11, 12, 1497. https://doi.org/10.3390/catal11121497. [CrossRef] [Google Scholar]
- Zelinsky N. (1911) Über Dehydrogenisation Durch Katalyse, Berichte der deutschen chemischen Gesellschaft 44, 3, 3121–3125. https://doi.org/10.1002/cber.191104403168. [CrossRef] [Google Scholar]
- Zelinsky N. (1912) Über Die Selektive Dehydrogenisations-Katalyse, Berichte der deutschen chemischen Gesellschaft 45, 3, 3678–3682. https://doi.org/10.1002/cber.191204503126. [CrossRef] [Google Scholar]
- Cooper A.C. (2012) Design and development of new carbon-based sorbent systems for an effective containment of hydrogen, Air Products and Chemicals Inc., pp. 86–377-P, 1039432. https://doi.org/10.2172/1039432 [Google Scholar]
- Clar E. (1983) The aromatic sextet, in Mobile source emissions including policyclic organic species, D. Rondia, M. Cooke, R.K. Haroz (eds.), NATO ASI Series. Springer, Dordrecht, Netherlands, pp. 49–58. https://doi.org/10.1007/978-94-009-7197-4_4 [CrossRef] [Google Scholar]
- Solà M. (2013) Forty years of Clar’s aromatic π-sextet rule, Front. Chem. 1. https://doi.org/10.3389/fchem.2013.00022 [Google Scholar]
- Pumera M., An Wong C.H. (2013) Graphane and hydrogenated graphene, Chem. Soc.Rev. 42, 14, 5987–5995. https://doi.org/10.1039/C3CS60132C. [CrossRef] [PubMed] [Google Scholar]
- Luo Z., Yu T., Kim K., Ni Z., You Y., Lim S., Shen Z., Wang S., Lin J. (2009) Thickness-dependent reversible hydrogenation of graphene layers, ACS Nano. 3, 7, 1781–1788. https://doi.org/10.1021/nn900371t. [CrossRef] [PubMed] [Google Scholar]
- Kalenchuk A., Bogdan V., Dunaev S., Kustov L. (2020) Influence of steric factors on reversible reactions of hydrogenation-dehydrogenation of polycyclic aromatic hydrocarbons on a Pt/C catalyst in hydrogen storage systems, Fuel 280, 118625. https://doi.org/10.1016/j.fuel.2020.118625. [CrossRef] [Google Scholar]
- Hydrogen, C. S. Mitsubishi Hitachi Power Systems Ltd. Development Bank of Japan Inc. 3 [Google Scholar]
- Vanhanen J.P., Lund P.D. (1995) Computational approaches for improving seasonal storage systems based on hydrogen technologies, Int. J. Hydrogen Energy 20, 7, 575–585. https://doi.org/10.1016/0360-3199(94)00110-L. [CrossRef] [Google Scholar]
- Taube M., Rippin D., Knecht W., Hakimifard D., Milisavljevic B., Gruenenfelder N. (1985) A prototype truck powered by hydrogen from organic liquid hydrides, Int. J. Hydrogen Energy 10, 9, 595–599. https://doi.org/10.1016/0360-3199(85)90035-7. [CrossRef] [Google Scholar]
- Kerleau P., Swesi Y., Meille V., Pitault I., Heurtaux F. (2010) Total catalytic oxidation of a side-product for an autothermal restoring hydrogen process, Catal. Today 157, 1, 321–326. https://doi.org/10.1016/j.cattod.2010.02.011. [CrossRef] [Google Scholar]
- Touzani A., Klvana D., Bélanger G. (1984) Dehydrogenation reactor for a vehicle equipped with a hydrogen engine: a simulation study, Int. J. Hydrogen Energy 9, 11, 929–936. https://doi.org/10.1016/0360-3199(84)90158-7. [CrossRef] [Google Scholar]
- Niimi T., Nagasawa H., Kanezashi M., Yoshioka T., Ito K., Tsuru T. (2014) Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation, J. Membrane Sci. 455, 375–383. https://doi.org/10.1016/j.memsci.2014.01.003. [CrossRef] [Google Scholar]
- Ali J.K., Newson E.J., Rippin D.W.T. (1994) Exceeding equilibrium conversion with a catalytic membrane reactor for the dehydrogenation of methylcyclohexane, Chem. Eng. Sci. 49, 13, 2129–2134. https://doi.org/10.1016/0009-2509(94)E0035-O. [CrossRef] [Google Scholar]
- Pal N., Agarwal M., Maheshwari K., Solanki Y.S. (2020) A review on types, fabrication and support material of hydrogen separation membrane, Mater. Today Proc. 28, 1386–1391. https://doi.org/10.1016/j.matpr.2020.04.806. [CrossRef] [Google Scholar]
- Chytil S., Glomm W.R., Vollebekk E., Bergem H., Walmsley J., Sjöblom J., Blekkan E.A. (2005) Platinum nanoparticles encapsulated in mesoporous silica: preparation, characterisation and catalytic activity in toluene hydrogenation, Microporous Mesoporous Mater. 86, 1, 198–206. https://doi.org/10.1016/j.micromeso.2005.06.037. [CrossRef] [Google Scholar]
- Alexeev O., Gates B.C. (1998) Iridium clusters supported on γ-Al2O3: structural characterization and catalysis of toluene hydrogenation, J. Catal. 176, 2, 310–320. https://doi.org/10.1006/jcat.1998.2053. [CrossRef] [Google Scholar]
- Weber W.A., Gates B.C. (1998) Rhodium supported on faujasites: effects of cluster size and CO ligands on catalytic activity for toluene hydrogenation, J. Catal. 180, 2, 207–217. https://doi.org/10.1006/jcat.1998.2264. [CrossRef] [Google Scholar]
- Suppino R.S., Landers R., Cobo A.J.G. (2016) Influence of Noble metals (Pd, Pt) on the performance of Ru/Al2O3 based catalysts for toluene hydrogenation in liquid phase, Appl. Catal. A Gen. 525, 41–49. https://doi.org/10.1016/j.apcata.2016.06.038. [CrossRef] [Google Scholar]
- Rousset J.L., Stievano L., Aires F.J.C.S., Geantet C., Renouprez A.J., Pellarin M. (2001) Hydrogenation of toluene over γ-Al2O3-Supported Pt, Pd, and Pd–Pt model catalysts obtained by laser vaporization of bulk metals, J. Catal. 197, 2, 335–343. https://doi.org/10.1006/jcat.2000.3083. [CrossRef] [Google Scholar]
- Thomas K., Binet C., Chevreau T., Cornet D., Gilson J.-P. (2002) Hydrogenation of toluene over supported Pt and Pd catalysts: influence of structural factors on the sulfur tolerance, J. Catal. 212, 1, 63–75. https://doi.org/10.1006/jcat.2002.3780. [CrossRef] [Google Scholar]
- Lindfors L.P., Salmi T., Smeds S. (1993) Kinetics of toluene hydrogenation on Ni/Al2O3 catalyst, Chem. Eng. Sci. 48, 22, 3813–3828. https://doi.org/10.1016/0009-2509(93)80224-E. [CrossRef] [Google Scholar]
- Shuwa S.M., Jibril B.Y., Al-Hajri R.S. (2017) Hydrogenation of toluene on Ni-Co-Mo supported zeolite catalysts, Nigerian J. Technol. 36, 4, 1114–1123. https://doi.org/10.4314/njt.v36i4.17. [Google Scholar]
- Wang J., Huang L., Li Q. (1998) Influence of different diluents in Pt/Al2O3 catalyst on the hydrogenation of benzene, toluene and o-xylene, Appl. Catal. A Gen. 175, 1, 191–199. https://doi.org/10.1016/S0926-860X(98)00216-6. [CrossRef] [Google Scholar]
- Zhu L., Zhang H., Hu W., Zheng J., Zhang N., Yu C., Ye H., Yang Z., Chen B.H. (2018) Nickel Hydroxide-Cobalt Hydroxide Nanoparticle Supported Ruthenium–Nickel–Cobalt Islands as an Efficient Nanocatalyst for the Hydrogenation Reaction, ChemCatChem 10, 9, 1998–2002. https://doi.org/10.1002/cctc.201701847. [CrossRef] [Google Scholar]
- Okada Y., Sasaki E., Watanabe E., Hyodo S., Nishijima H. (2006) Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method, Int. J. Hydrogen Energy 31, 10, 1348–1356. https://doi.org/10.1016/j.ijhydene.2005.11.014. [CrossRef] [Google Scholar]
- Wang J., Liu H., Fan S., Wang S., Xu G., Guo A., Wang Z. (2021) Dehydrogenation of cycloalkanes over N-doped carbon-supported catalysts: the effects of active component and molecular structure of the substrate, Nanomaterials 11, 11, 2846. https://doi.org/10.3390/nano11112846. [CrossRef] [PubMed] [Google Scholar]
- Shukla A.A., Gosavi P.V., Pande J.V., Kumar V.P., Chary K.V.R., Biniwale R.B. (2010) Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts, Int. J. Hydrogen Energy 35, 9, 4020–4026. https://doi.org/10.1016/j.ijhydene.2010.02.014. [CrossRef] [Google Scholar]
- Wu X., Lu H., Xiao Y., Guo H., Jia L., Li D. (2022) Acid site introduced by Al3+ penta and boron in Pt/Al2O3 catalyst for dehydrogenation of methylcyclohexane, Int. J. Hydrogen Energy 47, 82. https://doi.org/10.1016/j.ijhydene.2022.08.085. [Google Scholar]
- Parra C.F., Goldwasser M.R., Fajula F., Figueras F. (1985) A study of the hydrogen transfer reaction between isobutene and cyclohexane over zeolites using carbon-13 labelled molecules, Appl. Catal. 17, 2, 217–222. https://doi.org/10.1016/S0166-9834(00)83206-6. [CrossRef] [Google Scholar]
- de la Banda J.F.G., Melo A.C.Y.F.V. (1986) Dehydrogenation of methylcyclohexene on a PtNaY catalyst. Study of kinetics and deactivation, Appl. Catal. 26, 103–121. https://doi.org/10.1016/S0166-9834(00)82545-2. [CrossRef] [Google Scholar]
- Van Trimpont P.A., Marin G.B., Froment G.F. (1986) Kinetics of methylcyclohexane dehydrogenation on sulfided commercial platinum/alumina and platinum-rhenium/alumina catalysts, Ind. Eng. Chem. Fund. 25, 4, 544–553. https://doi.org/10.1021/i100024a014. [CrossRef] [Google Scholar]
- Chen L., Verma P., Hou K., Qi Z., Zhang S., Liu Y.-S., Guo J., Stavila V., Allendorf M.D., Zheng L., Salmeron M., Prendergast D., Somorjai G.A., Su J. (2022) Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst, Nat. Commun. 13, 1, 1092. https://doi.org/10.1038/s41467-022-28607-y. [CrossRef] [MathSciNet] [Google Scholar]
- Sebastian O., Nair S., Taccardi N., Wolf M., Søgaard A., Haumann M., Wasserscheid P. (2020) Stable and selective dehydrogenation of methylcyclohexane using supported catalytically active liquid metal solutions – Ga52Pt/SiO2 SCALMS, ChemCatChem 12, 18, 4533–4537. https://doi.org/10.1002/cctc.202000671. [CrossRef] [Google Scholar]
- Manabe R., Okada S., Inagaki R., Oshima K., Ogo S., Sekine Y. (2016) Surface protonics promotes catalysis, Sci. Rep. 6, 1, 38007. https://doi.org/10.1038/srep38007. [CrossRef] [Google Scholar]
- Kosaka M., Higo T., Ogo S., Seo J.G., Kado S., Imagawa K., Sekine Y. (2020) Low-temperature selective dehydrogenation of methylcyclohexane by surface protonics over Pt/Anatase-TiO2 catalyst, Int. J. Hydrogen Energy 45, 1, 738–743. https://doi.org/10.1016/j.ijhydene.2019.10.133. [CrossRef] [Google Scholar]
- Yolcular S., Olgun Ö. (2008) Ni/Al2O3 catalysts and their activity in dehydrogenation of methylcyclohexane for hydrogen production, Catal. Today 138, 3, 198–202. https://doi.org/10.1016/j.cattod.2008.07.020. [CrossRef] [Google Scholar]
- Al-ShaikhAli H., Jedidi A., Cavallo L., Takanabe K. (2015) Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system, Chem. Commun. 51 65, 12931–12934. https://doi.org/10.1039/C5CC04016G. [CrossRef] [PubMed] [Google Scholar]
- Al-ShaikhAli A.H., Jedidi A., Anjum D.H., Cavallo L., Takanabe K. (2017) Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene, ACS Catal. 7, 3, 1592–1600. https://doi.org/10.1021/acscatal.6b03299. [CrossRef] [Google Scholar]
- Zhao W., Chizallet C., Sautet P., Raybaud P. (2019) Dehydrogenation mechanisms of methyl-cyclohexane on γ-Al2O3 Supported Pt13: impact of cluster ductility, J. Catal. 370, 118–129. https://doi.org/10.1016/j.jcat.2018.12.004. [CrossRef] [Google Scholar]
- Zhao, W. Dehydrogenation mechanisms of methyl-cyclohexane on γ-alumina supported platinum subnanometric-clusters : DFT coupled with experimental kinetics and kinetic modellingdocument.pdf. HAL archives-ouvertes.fr. (accessed 2020-06-29). https://tel.archives-ouvertes.fr/tel-01827240/document. [Google Scholar]
- Obodo K.O., Ouma C.N.M., Bessarabov D. (2022) Low-Pt-based Sn alloy for the dehydrogenation of methylcyclohexane to toluene: a density functional theory study, Catalysts 12, 10, 1221. https://doi.org/10.3390/catal12101221. [CrossRef] [Google Scholar]
- Auer F., Blaumeiser D., Bauer T., Bösmann A., Szesni N., Libuda J., Wasserscheid P. (2019) Boosting the activity of hydrogen release from liquid organic hydrogen carrier systems by sulfur-additives to Pt on alumina catalysts, Catal. Sci. Technol. 9, 13, 3537–3547. https://doi.org/10.1039/C9CY00817A. [CrossRef] [Google Scholar]
- Ouma C.N.M., Obodo K.O., Modisha P.M., Bessarabov D. (2022) Si, P, S and Se surface additives as catalytic activity boosters for dehydrogenation of methylcyclohexane to toluene – a liquid organic hydrogen carrier system: density functional theory insights, Mater. Chem. Phys. 2022, 125728. https://doi.org/10.1016/j.matchemphys.2022.125728 [CrossRef] [Google Scholar]
- Zhang C., Song P., Zhang Y., Xiao L., Hou J., Wang X. (2022) Technical and cost analysis of imported hydrogen based on MCH-TOL hydrogen storage technology, Int. J. Hydrog. Energy. 47, 27717–27732. https://doi.org/10.1016/j.ijhydene.2022.06.113. [CrossRef] [Google Scholar]
- Informatics, N. O. of D.. WebBook de Chimie NIST. https://doi.org/10.18434/T4D303 [Google Scholar]
- Popescu A.I., Bombos M., Doukeh R., Bombos D., Bolocan I. (2016) Acidity influence of Ru catalysts on the hydrogenation of naphtalene, Rev. Chim. 67, 3, 5. [Google Scholar]
- Popescu (Stanica) A.I., Bombos M., Popovici R.D., Bombos D., Bolocan I. (2017) Hydrogenation of Naphtalene on Pt-Pd Catalyst, Rev. Chim. 68 2, 210–214. https://doi.org/10.37358/RC.17.2.5421 [CrossRef] [Google Scholar]
- Park K.-C., Yim D.-J., Ihm S.-K. (2002) Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation, Catal. Today 74, 3, 281–290. https://doi.org/10.1016/S0920-5861(02)00024-X. [CrossRef] [Google Scholar]
- Manríquez M.E., Hernandez-Pichardo M.L., Barrera M.C., Ramírez-López R., Castro L.V. (2018) Enhanced catalytic activity on the naphtalene hydrogenation reaction over Pt-Pd/Al2O3-CeO2 catalysts, Rev. Mex. Ing. Quím. 17, 3, 913–925. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Manriquez [CrossRef] [Google Scholar]
- Montesinos-Castellanos A., Zepeda T.A. (2008) High hydrogenation performance of the mesoporous NiMo/Al(Ti, Zr)–HMS catalysts, Microporous Mesoporous Mater. 113, 1, 146–162. https://doi.org/10.1016/j.micromeso.2007.11.012. [CrossRef] [Google Scholar]
- Kariya N., Fukuoka A., Ichikawa M. (2002) Efficient evolution of hydrogen from liquid cycloalkanes over pt-containing catalysts supported on active carbons under “Wet–Dry Multiphase Conditions”, Appl. Catal. A Gen. 233, 1, 91–102. https://doi.org/10.1016/S0926-860X(02)00139-4. [CrossRef] [Google Scholar]
- Shinohara C., Kawakami S., Moriga T., Hayashi H., Hodoshima S., Saito Y., Sugiyama S. (2004) Local structure around platinum in Pt/C Catalysts employed for liquid-phase dehydrogenation of decalin in the liquid-film state under reactive distillation conditions, Appl. Catal. A Gen. 266, 2, 251–255. https://doi.org/10.1016/j.apcata.2004.02.014. [CrossRef] [Google Scholar]
- Kariya N., Fukuoka A., Utagawa T., Sakuramoto M., Goto Y., Ichikawa M. (2003) Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts, Appl. Catal. A Gen. 247, 2, 247–259. https://doi.org/10.1016/S0926-860X(03)00104-2. [CrossRef] [Google Scholar]
- Ninomiya W., Tanabe Y., Sotowa K.-I., Yasukawa T., Sugiyama S. (2008) Dehydrogenation of cycloalkanes over noble metal catalysts supported on active carbon, Res. Chem. Intermed. 34, 8, 663–668. https://doi.org/10.1007/BF03036923. [CrossRef] [Google Scholar]
- Kim K., Oh J., Kim T.W., Park J.H., Han J.W., Suh Y.-W. (2017) Different catalytic behaviors of Pd and Pt metals in decalin dehydrogenation to naphthalene, Catal. Sci. Technol. 7, 17, 3728–3735. https://doi.org/10.1039/C7CY00569E. [CrossRef] [Google Scholar]
- Wang B., Goodman D.W., Froment G.F. (2008) Kinetic modeling of pure hydrogen production from decalin, J. Catal. 253, 2, 229–238. https://doi.org/10.1016/j.jcat.2007.11.012. [CrossRef] [Google Scholar]
- Martynenko E.A., Pimerzin Al.A., Savinov A.A., Verevkin S.P., Pimerzin A.A. (2020) Hydrogen release from decalin by catalytic dehydrogenation over supported platinum catalysts, Top. Catal. 63, 1, 178–186. https://doi.org/10.1007/s11244-020-01228-9. [CrossRef] [Google Scholar]
- Lee G., Jeong Y., Kim B.-G., Han J.S., Jeong H., Na H.B., Jung J.C. (2015) Hydrogen production by catalytic decalin dehydrogenation over carbon-supported platinum catalyst: effect of catalyst preparation method, Catal. Commun. 67, 40–44. https://doi.org/10.1016/j.catcom.2015.04.002. [CrossRef] [Google Scholar]
- Wang Z., Liu G., Zhang X. (2023) Efficient and stable Pt/CaO-TiO2-Al2O3 for the catalytic dehydrogenation of cycloalkanes as an endothermic hydrocarbon fuel, Fuel 331, 125732. https://doi.org/10.1016/j.fuel.2022.125732. [CrossRef] [Google Scholar]
- Jiang N., Rao K.S.R., Jin M.-J., Park S.-E. (2012) Effect of hydrogen spillover in decalin dehydrogenation over supported Pt catalysts, Appl. Catal. A Gen. 425–426, 62–67. https://doi.org/10.1016/j.apcata.2012.03.001. [CrossRef] [Google Scholar]
- Li P., Huang Y.-L., Chen D., Zhu J., Zhao T.-J., Zhou X.-G. (2009) CNFs-supported Pt catalyst for hydrogen evolution from decalin, Catal. Commun. 10, 6, 815–818. https://doi.org/10.1016/j.catcom.2008.12.004. [CrossRef] [Google Scholar]
- Tuo Y.-X., Shi L.-J., Cheng H.-Y., Zhu Y.-A., Yang M.-L., Xu J., Han Y.-F., Li P., Yuan W.-K. (2018) Insight into the support effect on the particle size effect of Pt/C catalysts in dehydrogenation, J Catal. 360, 175–186. https://doi.org/10.1016/j.jcat.2018.02.001. [CrossRef] [Google Scholar]
- Tuo Y., Yang L., Ma X., Ma Z., Gong S., Li P. (2021) Carbon nanotubes-supported Pt catalysts for decalin dehydrogenation to release hydrogen: a comparison between nitrogen- and oxygen-surface modification, Int. J. Hydrogen Energy 46, 1, 930–942. https://doi.org/10.1016/j.ijhydene.2020.09.225. [CrossRef] [Google Scholar]
- Tuo Y., Meng Y., Chen C., Lin D., Feng X., Pan Y., Li P., Chen D., Liu Z., Zhou Y., Zhang J. (2021) Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity, Appl. Catal. B: Environ. 288, 119996. https://doi.org/10.1016/j.apcatb.2021.119996. [CrossRef] [Google Scholar]
- Tuo Y., Yang L., Cheng H., Yang M., Zhu Y.-A., Li P. (2018) Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111) and Pt(211), Int. J. Hydrogen Energy 43, 42, 19575–19588. https://doi.org/10.1016/j.ijhydene.2018.09.002. [CrossRef] [Google Scholar]
- Wang Y., Shah N., Huggins F.E., Huffman G.P. (2006) Hydrogen production by catalytic dehydrogenation of tetralin and decalin over stacked cone carbon nanotube-supported Pt catalysts, Energy Fuels 20, 6, 2612–2615. https://doi.org/10.1021/ef060228t. [CrossRef] [Google Scholar]
- Kalenchuk A.N., Smetneva D.N., Bogdan V.I., Kustov L.M. (2015) Kinetics of decalin dehydrogenation on Pt/C catalyst, Russ. Chem. Bull. 64, 11, 2642–2645. https://doi.org/10.1007/s11172-015-1202-1. [CrossRef] [Google Scholar]
- Martynenko E.A., Vostrikov S.V., Pimerzin A.A. (2021) Hydrogen production from decalin over silica-supported platinum catalysts: a kinetic and thermodynamic study, Reac. Kinet. Mech. Cat. 133, 2, 713–728. https://doi.org/10.1007/s11144-021-02037-1. [CrossRef] [Google Scholar]
- Dziewiecki Z., Ihnatowicz M., Makowski A. (1979) Activity of Ni-Moly catalysts in tetralin or decalin dehydrogenation and in hydrogenation of coal-extract solution, Fuel 58, 10, 737–740. https://doi.org/10.1016/0016-2361(79)90072-3. [CrossRef] [Google Scholar]
- Qi S., Li Y., Yue J., Chen H., Yi C., Yang B. (2014) Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts, Chin. J. Catal. 35, 11, 1833–1839. https://doi.org/10.1016/S1872-2067(14)60178-9. [CrossRef] [Google Scholar]
- Patil S.P., Pande J.V., Biniwale R.B. (2013) Non-noble Ni–Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage, Int. J. Hydrogen Energy 38, 35, 15233–15241. https://doi.org/10.1016/j.ijhydene.2013.09.115. [CrossRef] [Google Scholar]
- Qi S., Yue J., Li Y., Huang J., Yi C., Yang B. (2014) Replacing platinum with tungsten carbide for decalin dehydrogenation, Catal. Lett. 144, 8, 1443–1449. https://doi.org/10.1007/s10562-014-1284-7. [CrossRef] [Google Scholar]
- Brückner N., Obesser K., Bösmann A., Teichmann D., Arlt W., Dungs J., Wasserscheid P. (2014) Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems, ChemSusChem 7, 1, 229–235. https://doi.org/10.1002/cssc.201300426. [CrossRef] [PubMed] [Google Scholar]
- Müller K., Stark K., Emely’anenko V.N., Varfolomeev M.A., Zaitsau D.H., Shoifet E., Schick C., Verevkin S.P., Arlt W. (2015) Liquid organic hydrogen carriers: thermophysical and thermochemical studies of benzyl- and dibenzyl-toluene derivatives, Ind. Eng. Chem. Res. 54, 32, 7967–7976. https://doi.org/10.1021/acs.iecr.5b01840. [CrossRef] [Google Scholar]
- Marlotherm-SH-SDS.Pdf. (accessed 2022-11-10). https://chem-group.com/wp-content/uploads/2020/07/Marlotherm-SH-SDS.pdf [Google Scholar]
- 0_HydrogeniousTechnologies.Pdf (accessed 2022-11-09). https://www.energiewende-erlangen.de/wp-content/uploads/2018/02/0_HydrogeniousTechnologies.pdf [Google Scholar]
- Kim T.W., Jeong H., Jo Y., Kim D., Park J.H., Kim S.K., Suh Y.-W. (2022) Advanced heterolytic H2 adsorption of K-added Ru/MgO catalysts for accelerating hydrogen storage into aromatic benzyltoluenes, J. Energy Chem., 71, 333–343. https://doi.org/10.1016/j.jechem.2022.03.047. [CrossRef] [Google Scholar]
- Do G., Preuster P., Aslam R., Bösmann A., Müller K., Arlt W., Wasserscheid P. (2016) Hydrogenation of the liquid organic hydrogen carrier compound dibenzyltoluene – reaction pathway determination by 1 H NMR spectroscopy, Reac. Chem. Eng. 1, 3, 313–320. https://doi.org/10.1039/C5RE00080G. [CrossRef] [Google Scholar]
- Jorschick H., Preuster P., Dürr S., Seidel A., Müller K., Bösmann A., Wasserscheid P. (2017) Hydrogen storage using a hot pressure swing reactor, Energy Environ. Sci. 10, 7, 1652–1659. https://doi.org/10.1039/C7EE00476A. [CrossRef] [Google Scholar]
- Shi L., Qi S., Qu J., Che T., Yi C., Yang B. (2019) Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier, Int. J. Hydrogen Energy 44, 11, 5345–5354. https://doi.org/10.1016/j.ijhydene.2018.09.083. [CrossRef] [Google Scholar]
- Ali A., Rohini A.K., Noh Y.S., Moon D.J., Lee H.J. (2022) Hydrogenation of dibenzyltoluene and the catalytic performance of Pt/Al2O3 with various Pt loadings for hydrogen production from perhydro-dibenzyltoluene, Inter. J. Energy Res. 46, 5, 6672–6688. https://doi.org/10.1002/er.7604. [CrossRef] [Google Scholar]
- Modisha P., Bessarabov D. (2020) Stress tolerance assessment of dibenzyltoluene-based liquid organic hydrogen carriers, Sustain. Energy Fuels 4, 9, 4662–4670. https://doi.org/10.1039/D0SE00625D. [CrossRef] [Google Scholar]
- Feng X., Jiang L., Li Z., Wang S., Ye J., Wu Y., Yuan B. (2022) Boosting the hydrogenation activity of dibenzyltoluene catalyzed by Mg-based metal hydrides, Int. J. Hydrogen Energy 47(57), 23994–24003. https://doi.org/10.1016/j.ijhydene.2022.04.234. [CrossRef] [Google Scholar]
- Aakko-Saksa P.T., Vehkamäki M., Kemell M., Keskiväli L., Simell P., Reinikainen M., Tapper U., Repo T. (2020) Hydrogen release from liquid organic hydrogen carriers catalysed by platinum on rutile-anatase structured titania, Chem. Commun. 56, 11, 1657–1660. https://doi.org/10.1039/C9CC09715E. [CrossRef] [PubMed] [Google Scholar]
- Modisha P., Gqogqa P., Garidzirai R., Ouma C.N.M., Bessarabov D. (2019) Evaluation of catalyst activity for release of hydrogen from liquid organic hydrogen carriers, Int. J. Hydrogen Energy 44, 39, 21926–21935. https://doi.org/10.1016/j.ijhydene.2019.06.212. [CrossRef] [Google Scholar]
- Modisha P., Garidzirai R., Güneş H., Bozbag S.E., Rommel S., Uzunlar E., Aindow M., Erkey C., Bessarabov D. (2022) A promising catalyst for the dehydrogenation of perhydro-dibenzyltoluene: Pt/Al2O3 prepared by supercritical CO2 deposition, Catalysts 12, 5, 489. https://doi.org/10.3390/catal12050489. [CrossRef] [Google Scholar]
- Jo Y., Wan Kim T., Oh J., Kim D., Suh Y.-W. (2022) Mesoporous sulfur-decorated Pt–Al2O3 for dehydrogenation of perhydro benzyltoluenes: activity-favorable adsorption of reaction species onto electron-deficient Pt atoms, J. Catal. 413, 127–137. https://doi.org/10.1016/j.jcat.2022.06.025. [CrossRef] [Google Scholar]
- Lee S., Lee J., Kim T., Han G., Lee J., Lee K., Bae J. (2021) Pt/CeO2 catalyst synthesized by combustion method for dehydrogenation of perhydro-dibenzyltoluene as liquid organic hydrogen carrier: effect of pore size and metal dispersion, Int. J. Hydrogen Energy 46, 7, 5520–5529. https://doi.org/10.1016/j.ijhydene.2020.11.038. [CrossRef] [Google Scholar]
- Solymosi T., Geißelbrecht M., Mayer S., Auer M., Leicht P., Terlinden M., Malgaretti P., Bösmann A., Preuster P., Harting J., Thommes M., Vogel N., Wasserscheid P. (2022) Nucleation as a rate-determining step in catalytic gas generation reactions from liquid phase systems, Sci. Adv. 8, 46, eade3262. https://doi.org/10.1126/sciadv.ade3262. [CrossRef] [Google Scholar]
- Shi L., Zhou Y., Qi S., Smith K.J., Tan X., Yan J., Yi C. (2020) Pt catalysts supported on H2 and O2 plasma-treated Al2O3 for hydrogenation and dehydrogenation of the liquid organic hydrogen carrier pair dibenzyltoluene and perhydrodibenzyltoluene, ACS Catal. 10, 18, 10661–10671. https://doi.org/10.1021/acscatal.0c03091. [CrossRef] [Google Scholar]
- Ouma C.N.M., Modisha P.M., Bessarabov D. (2020) Catalytic dehydrogenation onset of liquid organic hydrogen carrier, perhydro-dibenzyltoluene: the effect of Pd and Pt subsurface configurations, Comput. Mater. Sci. 172, 109332. https://doi.org/10.1016/j.commatsci.2019.109332. [CrossRef] [Google Scholar]
- Ouma C.N.M., Modisha P., Bessarabov D. (2018) Insight into the adsorption of a liquid organic hydrogen carrier, perhydro-i-dibenzyltoluene (i = m, o, p), on Pt, Pd and PtPd planar surfaces, RSC Adv. 8, 56, 31895–31904. https://doi.org/10.1039/C8RA05800H. [CrossRef] [Google Scholar]
- Kim C.H., Lee M.-W., Jang J.S., Lee S.H., Lee K.-Y. (2021) Enhanced activity of a WOx-incorporated Pt/Al2O3 catalyst for the dehydrogenation of homocyclic LOHCs: effects of impregnation sequence on Pt–WOx interactions, Fuel 313, 8, 122654. https://doi.org/10.1016/j.fuel.2021.122654. [Google Scholar]
- Zhou J., Chung J.S., Kang S.G. (2022) Designing Pt-based subsurface alloy catalysts for the dehydrogenation of perhydro-dibenzyltoluene: a first-principles study, Appl. Surf. Sci. 579, 152142. https://doi.org/10.1016/j.apsusc.2021.152142. [CrossRef] [Google Scholar]
- Dürr S., Zilm S., Geißelbrecht M., Müller K., Preuster P., Bösmann A., Wasserscheid P. (2021) Experimental determination of the hydrogenation/dehydrogenation – equilibrium of the LOHC system H0/H18-dibenzyltoluene, Int. J. Hydrogen Energy 46(64), 32583–32594. https://doi.org/10.1016/j.ijhydene.2021.07.119. [CrossRef] [Google Scholar]
- Ali A., Khan M.A., Abbas N., Choi H. (2022) Prediction of hydrogen storage in dibenzyltoluene empowered with machine learning, J. Energy Storage 55, 105844. https://doi.org/10.1016/j.est.2022.105844. [CrossRef] [Google Scholar]
- Müller K., Aslam R., Fischer A., Stark K., Wasserscheid P., Arlt W. (2016) Experimental assessment of the degree of hydrogen loading for the dibenzyl toluene based LOHC system, Int. J. Hydrogen Energy 41, 47, 22097–22103. https://doi.org/10.1016/j.ijhydene.2016.09.196. [CrossRef] [Google Scholar]
- Ali A., Rohini A.K., Lee H.J. (2022) Dehydrogenation of perhydro-dibenzyltoluene for hydrogen production in a microchannel reactor, Int. J. Hydrogen Energy, 47(48), 20905–20914. https://doi.org/10.1016/j.ijhydene.2022.04.212. [CrossRef] [Google Scholar]
- Rüde T., Bösmann A., Preuster P., Wasserscheid P., Arlt W., Müller K. (2018) Resilience of liquid organic hydrogen carrier based energy-storage systems, Energy Technol. 6, 3, 529–539. https://doi.org/10.1002/ente.201700446. [CrossRef] [Google Scholar]
- Bulgarin A., Jorschick H., Preuster P., Bösmann A., Wasserscheid P. (2020) Purity of hydrogen released from the liquid organic hydrogen carrier compound perhydro dibenzyltoluene by catalytic dehydrogenation, Int. J. Hydrogen Energy 45, 1, 712–720. https://doi.org/10.1016/j.ijhydene.2019.10.067. [CrossRef] [Google Scholar]
- Wunsch A., Berg T., Pfeifer P. (2020) Hydrogen production from the LOHC perhydro-dibenzyl-toluene and purification using a 5 Μm PdAg-membrane in a coupled microstructured system, Materials 13, 2, 277. https://doi.org/10.3390/ma13020277. [CrossRef] [PubMed] [Google Scholar]
- Geiling J., Steinberger M., Ortner F., Seyfried R., Nuß A., Uhrig F., Lange C., Öchsner R., Wasserscheid P., März M., Preuster P. (2021) Combined dynamic operation of PEM fuel cell and continuous dehydrogenation of perhydro-dibenzyltoluene, Int. J. Hydrogen Energy, 46(72), 35662–35677. https://doi.org/10.1016/j.ijhydene.2021.08.034. [CrossRef] [Google Scholar]
- Jorschick H., Geißelbrecht M., Eßl M., Preuster P., Bösmann A., Wasserscheid P. (2020) Benzyltoluene/dibenzyltoluene-based mixtures as suitable liquid organic hydrogen carrier systems for low temperature applications, Int. J. Hydrogen Energy 45, 29, 14897–14906. https://doi.org/10.1016/j.ijhydene.2020.03.210. [CrossRef] [Google Scholar]
- Zakgeym D., Engl T., Mahayni Y., Müller K., Wolf M., Wasserscheid P. (2022) Development of an efficient Pt/SiO2 catalyst for the transfer hydrogenation from perhydro-dibenzyltoluene to acetone, Appl. Catal. A Gen. 639, 118644. https://doi.org/10.1016/j.apcata.2022.118644. [CrossRef] [Google Scholar]
- Braun K., Wolf M., De Oliveira A., Preuster P., Wasserscheid P., Thiele S., Weiß L., Wensing M. (2022) Energetics of technical integration of 2-propanol fuel cells: thermodynamic and current and future technical feasibility, Energy Technol. 10, 8, 2200343. https://doi.org/10.1002/ente.202200343. [CrossRef] [Google Scholar]
- Hauenstein P., Seeberger D., Wasserscheid P., Thiele S. (2020) High performance direct organic fuel cell using the acetone/isopropanol liquid organic hydrogen carrier system, Electrochem. Commun. 118, 106786. https://doi.org/10.1016/j.elecom.2020.106786. [CrossRef] [Google Scholar]
- Clot E., Eisenstein O., Crabtree R.H. (2007) Computational structure-activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials, Chem. Commun. 22, 2231–2233. https://doi.org/10.1039/B705037B. [CrossRef] [PubMed] [Google Scholar]
- Cui Y., Kwok S., Bucholtz A., Davis B., Whitney R.A., Jessop P.G. (2008) The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage, New J. Chem. 32, 6, 1027–1037. https://doi.org/10.1039/B718209K. [CrossRef] [Google Scholar]
- Sotoodeh F., Huber B.J.M., Smith K.J. (2012) The effect of the N atom on the dehydrogenation of heterocycles used for hydrogen storage, Appl. Catal. A Gen. 419–420, 67–72. https://doi.org/10.1016/j.apcata.2012.01.013. [CrossRef] [Google Scholar]
- Pez G.P., Scott A.R., Cooper A.C., Cheng H., Wilhelm F.C., Abdourazak A.H. (2008) Hydrogen storage by reversible hydrogenation of Pi-conjugated substrates, US7351395B1 April 1, 2008 (accessed 2022-11-11). https://patents.google.com/patent/US7351395B1/en [Google Scholar]
- Sotoodeh F., Smith K.J. (2013) Analysis of H2 release from organic polycyclics over Pd catalysts using DFT, J. Phys. Chem. C 117, 1, 194–204. https://doi.org/10.1021/jp307325s. [CrossRef] [Google Scholar]
- Sotoodeh F., Zhao L., Smith K.J. (2009) Kinetics of H2 Recovery from Dodecahydro-N-Ethylcarbazole over a Supported Pd Catalyst, Appl. Catal. A Gen. 362, 1, 155–162. https://doi.org/10.1016/j.apcata.2009.04.039. [CrossRef] [Google Scholar]
- Hansong Cheng. Fuel Cell Division, International Association for Hydrogen Energy (accessed 2022-11-16). https://www.iahe-fcd.org/hansong-cheng [Google Scholar]
- 武汉氢阳能源有限公司 (accessed 2022-11-16) https://www.hynertech.com/col.jsp?id=112 [Google Scholar]
- Ye X., An Y., Xu G. (2011) Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage, J. Alloys Compd. 509, 1, 152–156. https://doi.org/10.1016/j.jallcom.2010.09.012. [CrossRef] [Google Scholar]
- Wan C., An Y., Xu G., Kong W. (2012) Study of catalytic hydrogenation of N-ethylcarbazole over ruthenium catalyst, Int. J. Hydrogen Energy 37, 17, 13092–13096. https://doi.org/10.1016/j.ijhydene.2012.04.123. [CrossRef] [Google Scholar]
- Morawa Eblagon K., Tam K., Yu K.M.K., Zhao S.-L., Gong X.-Q., He H., Ye L., Wang L.-C., Ramirez-Cuesta A.J., Tsang S.C. (2010) Study of catalytic sites on ruthenium for hydrogenation of N-ethylcarbazole: implications of hydrogen storage via reversible catalytic hydrogenation, J. Phys. Chem. C 114, 21, 9720–9730. https://doi.org/10.1021/jp908640k. [CrossRef] [Google Scholar]
- Eblagon K.M., Tam K., Yu K.M.K., Tsang S.C.E. (2012) Comparative study of catalytic hydrogenation of 9-ethylcarbazole for hydrogen storage over noble metal surfaces, J. Phys. Chem. C 116, 13, 7421–7429. https://doi.org/10.1021/jp212249g. [CrossRef] [Google Scholar]
- Mehranfar A., Izadyar M., Esmaeili A.A. (2015) Hydrogen storage by N-Ethylcarbazol as a new liquid organic hydrogen carrier: a DFT study on the mechanism, Int. J. Hydrogen Energy 40, 17, 5797–5806. https://doi.org/10.1016/j.ijhydene.2015.03.011. [CrossRef] [Google Scholar]
- Liu H., Xue J., Yu P., Zhang Y., Wang J., Che D. (2023) Hydrogenation of N-ethylcarbazole with hydrogen-methane mixtures for hydrogen storage, Fuel 331, 125920. https://doi.org/10.1016/j.fuel.2022.125920. [CrossRef] [Google Scholar]
- Morawa Eblagon K., Tam K., Edman Tsang S.C. (2012) Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications, Energy Environ. Sci. 5, 9, 8621–8630. https://doi.org/10.1039/C2EE22066K. [CrossRef] [Google Scholar]
- Eblagon K.M., Rentsch D., Friedrichs O., Remhof A., Zuettel A., Ramirez-Cuesta A.J., Tsang S.C. (2010) Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier, Int. J. Hydrogen Energy 35, 20, 11609–11621. https://doi.org/10.1016/j.ijhydene.2010.03.068. [CrossRef] [Google Scholar]
- Shin B.S., Yoon C.W., Kwak S.K., Kang J.W. (2018) Thermodynamic assessment of carbazole-based organic polycyclic compounds for hydrogen storage applications via a computational approach, Int. J. Hydrogen Energy 43, 27, 12158–12167. https://doi.org/10.1016/j.ijhydene.2018.04.182. [CrossRef] [Google Scholar]
- Forberg D., Schwob T., Zaheer M., Friedrich M., Miyajima N., Kempe R. (2016) Single-Catalyst High-Weight% Hydrogen Storage in an N -Heterocycle Synthesized from Lignin Hydrogenolysis Products and Ammonia, Nature Commun. 7, 1, 1–6. https://doi.org/10.1038/ncomms13201. [CrossRef] [Google Scholar]
- Yu H., Yang X., Wu Y., Guo Y., Li S., Lin W., Li X., Zheng J. (2020) Bimetallic Ru-Ni/TiO2 catalysts for hydrogenation of N-ethylcarbazole: role of TiO2 crystal structure, J. Energy Chem. 40, 188–195. https://doi.org/10.1016/j.jechem.2019.04.009. [CrossRef] [Google Scholar]
- Qin Y., Bai X. (2022) Hydrogenation of N-ethylcarbazole over Ni-Ru alloy nanoparticles loaded on graphitized carbon prepared by carbothermal reduction, Fuel 307, 121921. https://doi.org/10.1016/j.fuel.2021.121921. [CrossRef] [Google Scholar]
- Wang Y., Bai X. (2023) Efficient catalytic hydrogen storage of N-ethylcarbazole over RuNi alloy nanoparticles loaded on SBA-15 prepared by electrostatic adsorption, Fuel 331, 125709. https://doi.org/10.1016/j.fuel.2022.125709. [CrossRef] [Google Scholar]
- Liu X., Bai X., Wu W. (2022) Ultrasound-assisted green synthesis of Ru supported on LDH-CNT composites as an efficient catalyst for N-ethylcarbazole hydrogenation, Ultrasonics Sonochem., 91, 106227. https://doi.org/10.1016/j.ultsonch.2022.106227. [CrossRef] [Google Scholar]
- Wu Y., Yu H., Guo Y., Jiang X., Qi Y., Sun B., Li H., Zheng J., Li X. (2019) A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles: boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity, Chem. Sci. 10, 45, 10459–10465. https://doi.org/10.1039/C9SC04365A. [CrossRef] [PubMed] [Google Scholar]
- Wu Y., Yu H., Guo Y., Zhang Y., Jiang X., Sun B., Fu K., Chen J., Qi Y., Zheng J., Li X. (2019) Promoting hydrogen absorption of liquid organic hydrogen carriers by solid metal hydrides, J. Mater. Chem. A 7, 28, 16677–16684. https://doi.org/10.1039/C9TA05966K. [CrossRef] [Google Scholar]
- Wu Y., Guo Y., Yu H., Jiang X., Zhang Y., Qi Y., Fu K., Xie L., Li G., Zheng J., Li X. (2021) Nonstoichiometric yttrium hydride–promoted reversible hydrogen storage in a liquid organic hydrogen carrier, CCS Chem. 3, 3, 974–984. https://doi.org/10.31635/ccschem.020.202000255 [CrossRef] [Google Scholar]
- Yu H., Yang X., Jiang X., Wu Y., Chen S., Lin W., Wu Y., Xie L., Li X., Zheng J. (2021) LaNi5.5 Particles for Reversible Hydrogen Storage in N-Ethylcarbazole, Nano Energy 80, 105476. https://doi.org/10.1016/j.nanoen.2020.105476. [CrossRef] [Google Scholar]
- Yang M., Dong Y., Fei S., Ke H., Cheng H. (2014) A comparative study of catalytic dehydrogenation of perhydro-N-ethylcarbazole over noble metal catalysts, Int. J. Hydrogen Energy 39, 33, 18976–18983. https://doi.org/10.1016/j.ijhydene.2014.09.123. [CrossRef] [Google Scholar]
- Yang M., Han C., Ni G., Wu J., Cheng H. (2012) Temperature controlled three-stage catalytic dehydrogenation and cycle performance of perhydro-9-ethylcarbazole, Int. J. Hydrogen Energy 37, 17, 12839–12845. https://doi.org/10.1016/j.ijhydene.2012.05.092. [CrossRef] [Google Scholar]
- Sobota M., Nikiforidis I., Amende M., Zanón B.S., Staudt T., Höfert O., Lykhach Y., Papp C., Hieringer W., Laurin M., Assenbaum D., Wasserscheid P., Steinrück H.-P., Görling A., Libuda J. (2011) Dehydrogenation of dodecahydro-N-ethylcarbazole on Pd/Al2O3 model catalysts, Chem. A Eur. J. 17 41, 11542–11552. https://doi.org/10.1002/chem.201101311. [CrossRef] [PubMed] [Google Scholar]
- Amende M., Schernich S., Sobota M., Nikiforidis I., Hieringer W., Assenbaum D., Gleichweit C., Drescher H.-J., Papp C., Steinrück H.-P., Görling A., Wasserscheid P., Laurin M., Libuda J. (2013) Dehydrogenation mechanism of liquid organic hydrogen carriers: dodecahydro-N-ethylcarbazole on Pd(111), Chem. A Eur. J. 19, 33, 10854–10865. https://doi.org/10.1002/chem.201301323. [CrossRef] [PubMed] [Google Scholar]
- Gleichweit C., Amende M., Schernich S., Zhao W., Lorenz M.P.A., Höfert O., Brückner N., Wasserscheid P., Libuda J., Steinrück H.-P., Papp C. (2013) Dehydrogenation of dodecahydro-N-ethylcarbazole on Pt(111), ChemSusChem 6, 6, 974–977. https://doi.org/10.1002/cssc.201300263. [CrossRef] [PubMed] [Google Scholar]
- Amende M., Gleichweit C., Werner K., Schernich S., Zhao W., Lorenz M.P.A., Höfert O., Papp C., Koch M., Wasserscheid P., Laurin M., Steinrück H.-P., Libuda J. (2014) Model catalytic studies of liquid organic hydrogen carriers: dehydrogenation and decomposition mechanisms of dodecahydro-N-ethylcarbazole on Pt(111), ACS Catal. 4, 2, 657–665. https://doi.org/10.1021/cs400946x. [CrossRef] [Google Scholar]
- Amende M., Gleichweit C., Schernich S., Höfert O., Lorenz M.P.A., Zhao W., Koch M., Obesser K., Papp C., Wasserscheid P., Steinrück H.-P., Libuda J. (2014) Size and structure effects controlling the stability of the liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole during dehydrogenation over Pt model catalysts, J. Phys. Chem. Lett. 5, 8, 1498–1504. https://doi.org/10.1021/jz500157r. [CrossRef] [Google Scholar]
- Kustov L.M., Tarasov A.L., Kirichenko O.A. (2017) Microwave-activated dehydrogenation of perhydro-N-ethylcarbazol over bimetallic Pd-M/TiO2 catalysts as the second stage of hydrogen storage in liquid substrates, Int. J. Hydrogen Energy 42, 43, 26723–26729. https://doi.org/10.1016/j.ijhydene.2017.09.009. [CrossRef] [Google Scholar]
- Jiang Z., Gong X., Wang B., Wu Z., Fang T. (2019) A experimental study on the dehydrogenation performance of dodecahydro-N-ethylcarbazole on M/TiO2 catalysts, Int. J. Hydrogen Energy 44, 5, 2951–2959. https://doi.org/10.1016/j.ijhydene.2018.11.236. [CrossRef] [Google Scholar]
- Wang B., Chang T., Jiang Z., Wei J., Zhang Y., Yang S., Fang T. (2018) Catalytic dehydrogenation study of dodecahydro-N-ethylcarbazole by noble metal supported on reduced graphene oxide, Int. J. Hydrogen Energy 43, 15, 7317–7325. https://doi.org/10.1016/j.ijhydene.2018.02.156. [CrossRef] [Google Scholar]
- Jiang Z., Guo S., Fang T. (2019) Enhancing the catalytic activity and selectivity of PdAu/SiO2 bimetallic catalysts for dodecahydro-N-ethylcarbazole dehydrogenation by controlling the particle size and dispersion, ACS Appl. Energy Mater. 2, 10, 7233–7243. https://doi.org/10.1021/acsaem.9b01202. [CrossRef] [Google Scholar]
- Qiao X., She T., Zhang H., Wen X., Niu L., Ricardez-Sandoval L., Li J., Bai G. (2019) One-pot synthesis of porous silica-supported ultrafine Ni nanoparticles as efficient and stable catalyst for selective hydrogenation of benzophenone, Appl. Catal. B Environ. 259, 118111. https://doi.org/10.1016/j.apcatb.2019.118111. [CrossRef] [Google Scholar]
- Ding C., Zhu T., Wang F., Zhang Z., Dong Y., Yang M., Cheng G., Ke H., Cheng H. (2020) High active Pd@mil-101 catalyst for dehydrogenation of liquid organic hydrogen carrier, Int. J. Hydrogen Energy 45, 32, 16144–16152. https://doi.org/10.1016/j.ijhydene.2020.04.081. [CrossRef] [Google Scholar]
- Gong X., Jiang Z., Fang T. (2020) Enhancing selectivity and reducing cost for dehydrogenation of dodecahydro-N-ethylcarbazole by supporting platinum on titanium dioxide, Int. J. Hydrogen Energy 45, 11, 6838–6847. https://doi.org/10.1016/j.ijhydene.2019.12.203. [CrossRef] [Google Scholar]
- Wang B., Chen Y.-T., Chang T.-Y., Jiang Z., Huang Z.-Q., Wang S.-Y., Chang C.-R., Chen Y.-S., Wei J.-J., Yang S., Fang T. (2020) Facet-dependent catalytic activities of Pd/RGO: Exploring dehydrogenation mechanism of dodecahydro-N-ethylcarbazole, Appl. Catal. B Environ. 266, 118658. https://doi.org/10.1016/j.apcatb.2020.118658. [CrossRef] [Google Scholar]
- Feng Z., Chen X., Bai X. (2020) Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports, Environ. Sci. Pollut. Res. 27, 36172–36185. https://doi.org/10.1007/s11356-020-09698-w. [CrossRef] [PubMed] [Google Scholar]
- Wang Y., Feng Z., Bai X. (2022) Ultrafine palladium nanoparticles supported on mesoporous silica: an outstanding catalytic activity for hydrogen production from dodecahydro-N-ethylcarbazole, Fuel 315, 123236. https://doi.org/10.1016/j.fuel.2022.123236. [CrossRef] [Google Scholar]
- Wu Y., Liu X., Bai X., Wu W. (2022) Ultrasonic-assisted preparation of ultrafine Pd nanocatalysts loaded on Cl−-intercalated MgAl layered double hydroxides for the catalytic dehydrogenation of dodecahydro-N-ethylcarbazole, Ultrason. Sonochem. 88, 106097. https://doi.org/10.1016/j.ultsonch.2022.106097. [CrossRef] [Google Scholar]
- Wang B., Chang T., Gong X., Jiang Z., Yang S., Chen Y., Fang T. (2019) One-pot synthesis of Au/Pd core/shell nanoparticles supported on reduced graphene oxide with enhanced dehydrogenation performance for dodecahydro-N-ethylcarbazole, ACS Sustain. Chem. Eng. 7, 1, 1760–1768. https://doi.org/10.1021/acssuschemeng.8b05671. [CrossRef] [Google Scholar]
- Wang B., Chang T., Jiang Z., Wei J., Fang T. (2019) Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole, Appl. Catal. B Environ. 251, 261–272. https://doi.org/10.1016/j.apcatb.2019.03.071. [CrossRef] [Google Scholar]
- Feng Z., Bai X. (2022) Enhanced activity of bimetallic Pd-Ni nanoparticles on KIT-6 for production of hydrogen from dodecahydro-N-ethylcarbazole, Fuel 329, 125473. https://doi.org/10.1016/j.fuel.2022.125473. [CrossRef] [Google Scholar]
- Eblagon K.M., Tsang S.C.E. (2015) Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: effect of carbon substitution by heteroatom, Appl. Catal. B Environ. 163, 599–610. https://doi.org/10.1016/j.apcatb.2014.08.040. [CrossRef] [Google Scholar]
- Krishnamurthy S., Panvelker S., Shah Y.T. (1981) Hydrodeoxygenation of dibenzofuran and related compounds, AIChE J. 27, 6, 994–1001. https://doi.org/10.1002/aic.690270616. [CrossRef] [Google Scholar]
- Wang L., Zhang M., Zhang M., Sha G., Liang C. (2013) Hydrodeoxygenation of dibenzofuran over mesoporous silica COK-12 supported palladium catalysts, Energy Fuels 27, 4, 2209–2217. https://doi.org/10.1021/ef302166q. [CrossRef] [Google Scholar]
- Wang L., Li C., Jin S., Li W., Liang C. (2014) Hydrodeoxygenation of dibenzofuran over SBA-15 supported Pt, Pd, and Ru catalysts, Catal. Lett. 144, 5, 809–816. https://doi.org/10.1007/s10562-014-1236-2. [CrossRef] [MathSciNet] [Google Scholar]
- Jang M., Shin B.S., Jo Y.S., Kang J.W., Kwak S.K., Yoon C.W., Jeong H. (2020) A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether, Eur. J. Org. Chem. 42, 11–16. https://doi.org/10.1016/j.jechem.2019.05.024. [Google Scholar]
- Morton D., Cole-Hamilton D.J. (1987) Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2’-Bipyridyl)2JCI, J. Chem. Soc., Chem. Commun. 248–249 2. https://doi.org/10.1039/C39870000248. [Google Scholar]
- Nystrom R.F., Brown W.G. (1947) Reduction of organic compounds by lithium aluminum hydride. I. Aldehydes, ketones, esters, acid chlorides and acid anhydrides, J. Am. Chem. Soc. 69, 5, 1197–1199. https://doi.org/10.1021/ja01197a060. [CrossRef] [Google Scholar]
- Taniguchi T., Curran D.P. (2012) Silica gel promotes reductions of aldehydes and ketones by N-heterocyclic carbene boranes, Org. Lett. 14, 17, 4540–4543. https://doi.org/10.1021/ol302010f. [CrossRef] [PubMed] [Google Scholar]
- Sabatier P., Senderens J.-B. (1903) Décomposition catalytique de l’alcool éthylique par les métaux divisés; formation régulière d’aldéhyde, Gallica. (accessed 2022-11-21). https://gallica.bnf.fr/ark:/12148/bpt6k3091c [Google Scholar]
- Redina E.A., Vikanova K.V., Kapustin G.I., Mishin I.V., Tkachenko O.P., Kustov L.M. (2019) Selective room-temperature hydrogenation of carbonyl compounds under atmospheric pressure over platinum nanoparticles supported on ceria-zirconia mixed oxide, Eur. J. Org. Chem. 2019, 26, 4159–4170. https://doi.org/10.1002/ejoc.201900215. [CrossRef] [Google Scholar]
- Rachmady W., Vannice M.A. (2000) Acetic acid hydrogenation over supported platinum catalysts, J. Catal. 192, 2, 322–334. https://doi.org/10.1006/jcat.2000.2863. [CrossRef] [Google Scholar]
- Pan M., Flaherty D.W., Mullins C.B. (2011) Low-temperature hydrogenation of acetaldehyde to ethanol on H-precovered Au(111), J. Phys. Chem. Lett. 2, 12, 1363–1367. https://doi.org/10.1021/jz200577n. [CrossRef] [Google Scholar]
- Chen C.-C., Lin L., Ye R.-P., Huang L., Zhu L.-B., Huang Y.-Y., Qin Y.-Y., Yao Y.-G. (2021) Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation, Fuel 290, 120083. https://doi.org/10.1016/j.fuel.2020.120083. [CrossRef] [Google Scholar]
- Ni J., Leng W., Mao J., Wang J., Lin J., Jiang D., Li X. (2019) Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols, Appl. Catal. B Environ. 253, 170–178. https://doi.org/10.1016/j.apcatb.2019.04.043. [CrossRef] [Google Scholar]
- Kong X., Chen L. (2014) Chemoselective hydrogenation of aromatic aldehydes over SiO2 modified Co/γ-Al2O3, Appl. Catal. A Gen. 476, 34–38. https://doi.org/10.1016/j.apcata.2014.02.011. [CrossRef] [Google Scholar]
- He Z., Lin H., He P., Yuan Y. (2011) Effect of Boric Oxide Doping On The Stability And Activity of a Cu–SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277, 1, 54–63. https://doi.org/10.1016/j.jcat.2010.10.010. [CrossRef] [Google Scholar]
- Zheng X., Lin H., Zheng J., Duan X., Yuan Y. (2013) Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, ACS Catal. 3, 12, 2738–2749. https://doi.org/10.1021/cs400574v. [CrossRef] [Google Scholar]
- Manikandan M., Venugopal A.K., Nagpure A.S., Chilukuri S., Raja T. (2016) Promotional effect of Fe on the performance of supported Cu catalyst for ambient pressure hydrogenation of furfural, RSC Adv. 6, 5, 3888–3898. https://doi.org/10.1039/C5RA24742J. [CrossRef] [Google Scholar]
- Yu X., Vest T.A., Gleason-Boure N., Karakalos S.G., Tate G.L., Burkholder M., Monnier J.R., Williams C.T. (2019) Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2, J. Catal. 380, 289–296. https://doi.org/10.1016/j.jcat.2019.10.001. [CrossRef] [Google Scholar]
- Zhu Y., Shi L. (2014) Zn promoted Cu–Al catalyst for hydrogenation of ethyl acetate to alcohol, J. Ind. Eng. Chem. 20, 4, 2341–2347. https://doi.org/10.1016/j.jiec.2013.10.010. [CrossRef] [Google Scholar]
- Huang C., Zhang H., Zhao Y., Chen S., Liu Z. (2012) Diatomite-supported Pd–M (M=Cu Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters, J. Colloid Interface Sci. 386, 1, 60–65. https://doi.org/10.1016/j.jcis.2012.07.032. [CrossRef] [Google Scholar]
- Liu Y., Ding J., Yang J., Bi J., Liu K., Chen J. (2017) Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles, Catal. Commun. 98, 43–46. https://doi.org/10.1016/j.catcom.2017.05.007. [CrossRef] [Google Scholar]
- Wang Y., Duan X., Zheng J., Lin H., Yuan Y., Ariga H., Takakusagi S., Asakura K. (2012) Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold, Catal. Sci. Technol. 2, 8, 1637–1639. https://doi.org/10.1039/C2CY20154B. [CrossRef] [Google Scholar]
- Haffad D., Kameswari U., Bettahar M.M., Chambellan A., Lavalley J.C. (1997) Reduction of benzaldehyde on metal oxides, J. Catal. 172, 1, 85–92. https://doi.org/10.1006/jcat.1997.1854. [CrossRef] [Google Scholar]
- Cox J.D., Pilcher G. (1970) Thermochemistry of organic and organometallic compounds, Academic Press (accessed 2022-11-23). https://scholar.google.com/scholar_lookup?title=Thermochemistry+of+organic+and+organometallic+compounds&author=Cox%2C+J.+D.&publication_year=1970 [Google Scholar]
- Wiberg K.B., Crocker L.S., Morgan K.M. (1991) Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc. 113, 9, 3447–3450. https://doi.org/10.1021/ja00009a033. [CrossRef] [Google Scholar]
- Church J.M., Joshi H.K. (1951) Acetaldehyde by dehydrogenation of ethyl alcohol, Ind. Eng. Chem. 43, 8, 1804–1811. https://doi.org/10.1021/ie50500a035. [CrossRef] [Google Scholar]
- Zhang P., Wang Q.-N., Yang X., Wang D., Li W.-C., Zheng Y., Chen M., Lu A.-H. (2017) A highly porous carbon support rich in graphitic-N stabilizes copper nanocatalysts for efficient ethanol dehydrogenation, ChemCatChem 9, 3, 505–510. https://doi.org/10.1002/cctc.201601373. [CrossRef] [Google Scholar]
- Wang Q.-N., Shi L., Li W., Li W.-C., Si R., Schüth F., Lu A.-H. (2018) Cu supported on thin carbon layer-coated porous SiO2 for efficient ethanol dehydrogenation, Catal. Sci. Technol. 8, 2, 472–479. https://doi.org/10.1039/C7CY02057K. [CrossRef] [Google Scholar]
- Li M.-Y., Lu W.-D., He L., Schüth F., Lu A.-H. (2019) Tailoring the surface structure of silicon carbide support for copper catalyzed ethanol dehydrogenation, ChemCatChem 11, 1, 481–487. https://doi.org/10.1002/cctc.201801742. [CrossRef] [Google Scholar]
- Hanukovich S., Dang A., Christopher P. (2019) Influence of metal oxide support acid sites on Cu-catalyzed nonoxidative dehydrogenation of ethanol to acetaldehyde, ACS Catal. 9, 4, 3537–3550. https://doi.org/10.1021/acscatal.8b05075. [CrossRef] [Google Scholar]
- Pampararo G., Garbarino G., Riani P., Villa García M., Sánchez Escribano V., Busca G. (2020) A study of ethanol dehydrogenation to acetaldehyde over supported copper catalysts: catalytic activity, deactivation and regeneration, Appl. Catal. A Gen. 602, 117710. https://doi.org/10.1016/j.apcata.2020.117710. [CrossRef] [Google Scholar]
- Hao Y., Zhao D., Liu W., Zhang M., Lou Y., Wang Z., Tang Q., Yang J. (2022) Uniformly dispersed Cu nanoparticles over mesoporous silica as a highly selective and recyclable ethanol dehydrogenation catalyst, Catalysts 12, 9, 1049. https://doi.org/10.3390/catal12091049. [CrossRef] [Google Scholar]
- Idriss H. (2004) Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts, Plat. Met. Rev. 48, 3, 105–115. https://doi.org/10.1595/147106704X1603. [CrossRef] [Google Scholar]
- Pacheco H.P., de Souza E.F., Landi S.M., David M.V., Tyler Prillaman J., Davis R.J., Toniolo F.S. (2019) Ru promoted MgO and Al-modified MgO for ethanol upgrading, Top Catal. 62, 12, 894–907. https://doi.org/10.1007/s11244-019-01177-y. [CrossRef] [Google Scholar]
- Mitsudome T., Mikami Y., Funai H., Mizugaki T., Jitsukawa K., Kaneda K. (2008) Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst, Angew. Chem. Int. Ed. 47, 1, 138–141. https://doi.org/10.1002/anie.200703161. [CrossRef] [PubMed] [Google Scholar]
- Cornejo-Romero J., Solis-Garcia A., Vega-Diaz S.M., Fierro-Gonzalez J.C. (2017) Reverse hydrogen spillover during ethanol dehydrogenation on TiO2-supported gold catalysts, Mole. Catal. 433, 391–402. https://doi.org/10.1016/j.mcat.2017.02.041. [CrossRef] [Google Scholar]
- Chernov A.N., Astrakova T.V., Koltunov K.Y., Sobolev V.I. (2021) Ethanol dehydrogenation to acetaldehyde over Co@N-doped carbon, Catalysts 11, 11, 1411. https://doi.org/10.3390/catal11111411. [CrossRef] [Google Scholar]
- Mamontov G.V., Grabchenko M.V., Sobolev V.I., Zaikovskii V.I., Vodyankina O.V. (2016) Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: Role of Ag-CeO2 interface, Appl. Catal. A Gen. 528, 161–167. https://doi.org/10.1016/j.apcata.2016.10.005. [CrossRef] [Google Scholar]
- Sushkevich V.L., Ivanova I.I., Taarning E. (2013) Mechanistic study of ethanol dehydrogenation over silica-supported silver, ChemCatChem 5, 8, 2367–2373. https://doi.org/10.1002/cctc.201300033. [CrossRef] [Google Scholar]
- Wang C., Garbarino G., Allard L.F., Wilson F., Busca G., Flytzani-Stephanopoulos M. (2016) Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx, ACS Catal. 6, 1, 210–218. https://doi.org/10.1021/acscatal.5b01593. [CrossRef] [Google Scholar]
- Rodriguez-Gomez A., Holgado J.P., Caballero A. (2017) Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde, ACS Catal. 7, 8, 5243–5247. https://doi.org/10.1021/acscatal.7b01348. [CrossRef] [Google Scholar]
- Wadsö I., Bjerrum J., Trætteberg M., Grönvall A., Zaar B., Diczfalusy E. (1958) The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand. 12, 630–634. https://doi.org/10.3891/acta.chem.scand.12-0630. [CrossRef] [Google Scholar]
- Christensen C.H., Jørgensen B., Rass-Hansen J., Egeblad K., Madsen R., Klitgaard S.K., Hansen S.M., Hansen M.R., Andersen H.C., Riisager A. (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst, Angew. Chem. Int. Ed. 45, 28, 4648–4651. https://doi.org/10.1002/anie.200601180. [CrossRef] [PubMed] [Google Scholar]
- Balaraman E., Khaskin E., Leitus G., Milstein D. (2013) Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source, Nat. Chem. 5, 2, 122–125. https://doi.org/10.1038/nchem.1536. [CrossRef] [PubMed] [Google Scholar]
- Li J.J. (2014) Cannizzaro reaction. In name reactions, Springer International Publishing:, Cham, pp. 106–107. https://doi.org/10.1007/978-3-319-03979-4_51. [Google Scholar]
- Hattori H. (2001) Solid base catalysts: generation of basic sites and application to organic synthesis, Appl. Catal. A Gen. 222, 1, 247–259. https://doi.org/10.1016/S0926-860X(01)00839-0. [CrossRef] [Google Scholar]
- Sawama Y., Morita K., Yamada T., Nagata S., Yabe Y., Monguchi Y., Sajiki H. (2014) Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media, Green Chem. 16, 7, 3439–3443. https://doi.org/10.1039/C4GC00434E. [CrossRef] [Google Scholar]
- Sawama Y., Morita K., Asai S., Kozawa M., Tadokoro S., Nakajima J., Monguchi Y., Sajiki H. (2015) Palladium on carbon-catalyzed aqueous transformation of primary alcohols to carboxylic acids based on dehydrogenation under mildly reduced pressure, Adv. Synth. Catal. 357, 6, 1205–1210. https://doi.org/10.1002/adsc.201401123. [CrossRef] [Google Scholar]
- Bordoloi K., Kalita G.D., Das P. (2022) Acceptorless dehydrogenation of alcohols to carboxylic acids by palladium nanoparticles supported on NiO: delving into metal-support cooperation in catalysis, Dalton Trans. 51, 25, 9922–9934. https://doi.org/10.1039/D2DT01311H. [CrossRef] [PubMed] [Google Scholar]
- Yin S., Zheng Q., Chen J., Tu T. (2022) Acceptorless dehydrogenation of primary alcohols to carboxylic acids by self-supported NHC-Ru single-site catalysts, J. Catal. 408, 165–172. https://doi.org/10.1016/j.jcat.2022.02.018. [CrossRef] [Google Scholar]
- Monda F., Madsen R. (2018) Zinc oxide-catalyzed dehydrogenation of primary alcohols into carboxylic acids, Chem. A Eur. J. 24, 67, 17832–17837. https://doi.org/10.1002/chem.201804402. [CrossRef] [PubMed] [Google Scholar]
- Li B., Fang J., Xu D., Zhao H., Zhu H., Zhang F., Dong Z. (2021) Atomically Dispersed Co clusters anchored on N-doped carbon nanotubes for efficient dehydrogenation of alcohols and subsequent conversion to carboxylic acids, ChemSusChem 14, 20, 4536–4545. https://doi.org/10.1002/cssc.202101330. [CrossRef] [PubMed] [Google Scholar]
- Chen C., Wang Z.-Q., Gong Y.-Y., Wang J.-C., Yuan Y., Cheng H., Sang W., Chaemchuen S., Verpoort F. (2021) Cobalt embedded in nitrogen-doped porous carbon as a robust heterogeneous catalyst for the atom-economic alcohol dehydrogenation to carboxylic acids, Carbon 174, 284–294. https://doi.org/10.1016/j.carbon.2020.12.040. [CrossRef] [Google Scholar]
- Mittal R., Awasthi S.K. (2022) Bimetallic oxide catalyst for the dehydrogenative oxidation reaction of alcohols: practical application in the synthesis of value-added chemicals, ACS Sustain. Chem. Eng. 10, 4, 1702–1713. https://doi.org/10.1021/acssuschemeng.1c07799. [CrossRef] [Google Scholar]
- Gao D., Feng Y., Yin H., Wang A., Jiang T. (2013) Coupling reaction between ethanol dehydrogenation and maleic anhydride hydrogenation catalyzed by Cu/Al2O3, Cu/ZrO2, and Cu/ZnO catalysts, Chem. Eng. J. 233, 349–359. https://doi.org/10.1016/j.cej.2013.08.058. [CrossRef] [Google Scholar]
- Franckaerts J., Froment G.F. (1964) Kinetic study of the dehydrogenation of ethanol, Chem. Eng. Sci. 19, 10, 807–818. https://doi.org/10.1016/0009-2509(64)85092-2. [CrossRef] [Google Scholar]
- Iwasa N., Takezawa N. (1991) Reforming of ethanol – dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts, BCSJ 64, 9, 2619–2623. https://doi.org/10.1246/bcsj.64.2619. [CrossRef] [Google Scholar]
- Wang L., Zhu W., Zheng D., Yu X., Cui J., Jia M., Zhang W., Wang Z. (2010) Direct transformation of ethanol to ethyl acetate on Cu/ZrO2 Catalyst, Reac. Kinet. Mech. Cat. 101, 2, 365–375. https://doi.org/10.1007/s11144-010-0216-9. [CrossRef] [Google Scholar]
- Mitsudome T., Mikami Y., Ebata K., Mizugaki T., Jitsukawa K., Kaneda K. (2008) Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols, Chem. Commun. 39, 4804–4806. https://doi.org/10.1039/B809012B. [CrossRef] [Google Scholar]
- Miura H., Nakahara K., Kitajima T., Shishido T. (2017) Concerted functions of surface acid-base pairs and supported copper catalysts for dehydrogenative synthesis of esters from primary alcohols, ACS Omega 2, 9, 6167–6173. https://doi.org/10.1021/acsomega.7b01142. [CrossRef] [PubMed] [Google Scholar]
- Inui K., Kurabayashi T., Sato S., Ichikawa N. (2004) Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst, J. Mole. Catal. A Chem. 216, 1, 147–156. https://doi.org/10.1016/j.molcata.2004.02.017. [CrossRef] [Google Scholar]
- Inui K., Kurabayashi T., Sato S. (2002) Direct synthesis of ethyl acetate from ethanol carried out under pressure, J. Catal. 212, 2, 207–215. https://doi.org/10.1006/jcat.2002.3769. [CrossRef] [Google Scholar]
- Colley S.W., Tabatabaei J., Waugh K.C., Wood M.A. (2005) The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst, J. Catal. 236, 1, 21–33. https://doi.org/10.1016/j.jcat.2005.09.012. [CrossRef] [Google Scholar]
- Carotenuto G., Tesser R., Di Serio M., Santacesaria E. (2013) Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst, Catal. Today 203, 202–210. https://doi.org/10.1016/j.cattod.2012.02.054. [CrossRef] [Google Scholar]
- Li R., Zhang M., Yu Y. (2012) A DFT study on the Cu (111) surface for ethyl acetate synthesis from ethanol dehydrogenation, Appl. Surf. Sci. 258, 18, 6777–6784. https://doi.org/10.1016/j.apsusc.2012.01.171. [CrossRef] [Google Scholar]
- Finger P.H., Osmari T.A., Costa M.S., Bueno J.M.C., Gallo J.M.R. (2020) The role of the interface between cu and metal oxides in the ethanol dehydrogenation, Appl. Catal. A Gen. 589, 117236. https://doi.org/10.1016/j.apcata.2019.117236. [CrossRef] [Google Scholar]
- Freitas I.C., Gallo J.M.R., Bueno J.M.C., Marques C.M.P. (2016) The effect of Ag in the Cu/ZrO2 performance for the ethanol conversion, Top. Catal. 59, 2, 357–365. https://doi.org/10.1007/s11244-015-0439-0. [CrossRef] [Google Scholar]
- Sato A.G., Volanti D.P., de Freitas I.C., Longo E., Bueno J.M.C. (2012) Site-selective ethanol conversion over supported copper catalysts, Catal. Commun. 26, 122–126. https://doi.org/10.1016/j.catcom.2012.05.008. [CrossRef] [Google Scholar]
- Sato A.G., Volanti D.P., Meira D.M., Damyanova S., Longo E., Bueno J.M.C. (2013) Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion, J. Catal. 307, 1–17. https://doi.org/10.1016/j.jcat.2013.06.022. [CrossRef] [Google Scholar]
- Moromi S.K., Siddiki S.M.A.H., Ali M.A., Kon K., Shimizu K. (2014) Acceptorless dehydrogenative coupling of primary alcohols to esters by heterogeneous Pt catalysts, Catal. Sci. Technol. 4, 10, 3631–3635. https://doi.org/10.1039/C4CY00979G. [CrossRef] [Google Scholar]
- Ouyang M., Cao S., Yang S., Li M., Flytzani-Stephanopoulos M. (2020) Atomically dispersed Pd supported on zinc oxide for selective nonoxidative ethanol dehydrogenation, Ind. Eng. Chem. Res. 59, 6, 2648–2656. https://doi.org/10.1021/acs.iecr.9b05202. [CrossRef] [Google Scholar]
- McCullough L.R., Childers D.J., Watson R.A., Kilos B.A., Barton D.G., Weitz E., Kung H.H., Notestein J.M. (2017) Acceptorless dehydrogenative coupling of neat alcohols using group VI sulfide catalysts, ACS Sustain. Chem. Eng. 5, 6, 4890–4896. https://doi.org/10.1021/acssuschemeng.7b00303. [CrossRef] [Google Scholar]
- Gnanaprakasam B., Ben-David Y., Milstein D. (2010) Ruthenium pincer-catalyzed acylation of alcohols using esters with liberation of hydrogen under neutral conditions, Adv. Synth. Catal. 352, 18, 3169–3173. https://doi.org/10.1002/adsc.201000663. [CrossRef] [Google Scholar]
- Cheng J., Zhu M., Wang C., Li J., Jiang X., Wei Y., Tang W., Xue D., Xiao J. (2016) Chemoselective dehydrogenative esterification of aldehydes and alcohols with a dimeric rhodium(II) catalyst, Chem. Sci. 7, 7, 4428–4434. https://doi.org/10.1039/C6SC00145A. [CrossRef] [PubMed] [Google Scholar]
- Das U.K., Ben-David Y., Leitus G., Diskin-Posner Y., Milstein D. (2019) Dehydrogenative cross-coupling of primary alcohols to form cross-esters catalyzed by a manganese pincer complex, ACS Catal. 9, 1, 479–484. https://doi.org/10.1021/acscatal.8b04585. [CrossRef] [Google Scholar]
- Zhou Q.-Q., Zou Y.Q., Ben David Y., Milstein D. (2020) A reversible liquid to liquid organic hydrogen carrier system based on ethylene glycol and ethanol, Chem. Eur. J. chem.202002749. https://doi.org/10.1002/chem.202002749. [Google Scholar]
- Bechthold I., Bretz K., Kabasci S., Kopitzky R., Springer A. (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources, Chem. Eng. Technol. 31, 5, 647–654. https://doi.org/10.1002/ceat.200800063. [CrossRef] [Google Scholar]
- Javaid A., Bildea C.S. (2014) Design and control of an integrated 1,4-butanediol dehydrogenation and furfural hydrogenation plant, Chem. Eng. Technol. 37, 9, 1515–1524. https://doi.org/10.1002/ceat.201400210. [CrossRef] [Google Scholar]
- Zhu Y.-L., Xiang H.-W., Wu G.-S., Bai L., Li Y.-W. (2002) A novel route for synthesis of γ-butyrolactone through the coupling of hydrogenation and dehydrogenation, Chem. Commun. 3, 254–255. https://doi.org/10.1039/B109658N. [CrossRef] [Google Scholar]
- Knauth P., Sabbah R. (1990) Energetics of intra- and intermolecular bonds in ω-alkanediols: (II) thermochemical study of 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol at 298.15 K, Struct Chem 1, 1, 43–46. https://doi.org/10.1007/BF00675783. [CrossRef] [Google Scholar]
- Koyama H. (October 16, 1990.) Production of lactone compound, JPH02255668A (accessed 2022-11-28) https://patents.google.com/patent/JPH02255668A/en?oq=H.+Koyama%2c+Daicel+Kagaku+Kougyou+K.+K.+Jpn.+Kokai+Tokkyo+Koho.+JP02-255668+(1990) [Google Scholar]
- Ichiki T., Mori K., Suzuki S., Ueno H., Kobayashi K. (May 11, 1993.) Process for the preparation of gamma-butyrolactone, US5210229A (accessed 2022-11-28). https://patents.google.com/patent/US5210229A/en [Google Scholar]
- Mercker H.J., Pape F.-F., Simon J., Henne A., Hesse M., Kohler U., Dostalek R., Erdbrugger C.F., Kratz D. (2000) Catalyst for dehydrogenating 1,4-butanediol to γ-butyrolactone, US6093677A. July 25, 2000. (accessed 2022-11-28). https://patents.google.com/patent/US6093677A/en?oq=]+H.J.+Mercker%2c+F.-F.+Pape%2c+J.+Simon%2c+A.+Henne%2c+M.+Hesse%2c+U.+Koehler%2c+R.+Dostalek%2c+C.F.+Erdbruegger%2c+D.+Kratz%2c+BASF+Aktiengesellschaft%2c+US+Patent+US6093677+(2000 [Google Scholar]
- Mimura H., 三村英之, Watanabe M., 渡辺真人 (1993) Method for producing γ-butyrolactone, JPH05286959A. November 2, 1993 (accessed 2022-11-28). https://patents.google.com/patent/JPH05286959A/en?oq=H.+Mimura%2c+M.+Watanabe%2c+Tosoh+K.+K.+Jpn.+Kokai+Tokkyo+Koho.+JP05-286959+(1993) [Google Scholar]
- Ichikawa N., Sato S., Takahashi R., Sodesawa T., Inui K. (2004) Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst, J. Mole. Catal. A Chem. 212, 1, 197–203. https://doi.org/10.1016/j.molcata.2003.10.028. [CrossRef] [Google Scholar]
- Bhanushali J.T., Prasad D., Patil K.N., Reddy K.S., Kainthla I., Rao K.S.R., Jadhav A.H., Nagaraja B.M. (2020) Tailoring the catalytic activity of basic mesoporous Cu/CeO2 catalyst by Al2O3 for selective lactonization and dehydrogenation of 1,4-butanediol to γ-butyrolactone, Catal. Commun. 143, 106049. https://doi.org/10.1016/j.catcom.2020.106049. [CrossRef] [Google Scholar]
- Zhang B., Zhu Y., Ding G., Zheng H., Li Y. (2012) Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ-butyrolactone, Appl. Catal. A Gen. 443–444, 191–201. https://doi.org/10.1016/j.apcata.2012.07.042. [CrossRef] [Google Scholar]
- Bhanushali J.T., Prasad D., Patil K.N., Babu G.V.R., Kainthla I., Rao K.S.R., Jadhav A.H., Nagaraja B.M. (2019) The selectively regulated vapour phase dehydrogenation of 1,4-butanediol to γ-butyrolactone employing a copper-based ceria catalyst, New J. Chem. 43, 30, 11968–11983. https://doi.org/10.1039/C9NJ03067K. [CrossRef] [Google Scholar]
- Patil K.N., Prasad D., Manoorkar V.K., Bhanushali J.T., Jadhav A.H., Nagaraja B.M. (2022) Selective vapour-phase dehydrocyclization of biomass-derived 1,4-butanediol to γ-butyrolactone over Cu/ZnAl2O4-CeO2 catalyst, J. Ind. Eng. Chem. 106, 142–151. https://doi.org/10.1016/j.jiec.2021.10.018. [CrossRef] [Google Scholar]
- Reddy K.H.P., Suh Y.-W., Anand N., Raju B.D., Rao K.S.R. (2017) Coupling of ortho-chloronitrobenzene hydrogenation with 1,4-butanediol dehydrogenation over CuMgO catalysts: a hydrogen free process, Catal. Commun. 95, 21–25. https://doi.org/10.1016/j.catcom.2017.02.029. [CrossRef] [Google Scholar]
- Nagaiah P., Venkat Rao M., Thirupathaiah K., Venkateshwarlu V., David Raju B., Rama Rao K.S. (2018) Selective vapour phase dehydrogenation of biomass-derived 1,4-butanediol to gamma butyrolactone over Cu/ZrO2 catalysts: influence of La2O3 promotor, Res. Chem. Intermed. 44, 10, 5817–5831. https://doi.org/10.1007/s11164-018-3457-2. [CrossRef] [Google Scholar]
- Hwang D.W., Kashinathan P., Lee J.M., Lee J.H., Lee U.H., Hwang J.S., Hwang Y.K., Chang J.S. (2011) Production of γ-butyrolactone from biomass-derived 1,4-butanediol over novel copper-silica nanocomposite, Green Chem. 13, 7, 1672–1675. https://doi.org/10.1039/C1GC15261K. [CrossRef] [Google Scholar]
- Raju M.A., Gidyonu P., Nagaiah P., Rao M.V., Raju B.D., Rao K.S.R. (2019) Mesoporous silica-supported copper catalysts for dehydrogenation of biomass-derived 1,4-butanediol to gamma butyrolactone in a continuous process at atmospheric pressure, Biomass Conv. Bioref. 9, 4, 719–726. https://doi.org/10.1007/s13399-019-00406-4. [CrossRef] [Google Scholar]
- Kim W.-H., Park I.S., Park J. (2006) Acceptor-free alcohol dehydrogenation by recyclable ruthenium catalyst, Org. Lett. 8, 12, 2543–2545. https://doi.org/10.1021/ol060750z. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Touchy A.S., Shimizu K. (2015) Acceptorless dehydrogenative lactonization of diols by Pt-loaded SnO2 catalysts, RSC Adv. 5, 37, 29072–29075. https://doi.org/10.1039/C5RA03337C. [CrossRef] [Google Scholar]
- Wada E., Tyagi A., Yamamoto A., Yoshida H. (2017) Dehydrogenative lactonization of diols with a platinum-loaded titanium oxide photocatalyst, Photochem. Photobiol. Sci. 16, 12, 1744–1748. https://doi.org/10.1039/C7PP00258K. [CrossRef] [PubMed] [Google Scholar]
- Jones D.T., Woods D.R. (1986) Acetone-butanol fermentation revisited, Microbiologic. Rev. 50, 4, 484–524. https://doi.org/10.1128/mr.50.4.484-524.1986. [CrossRef] [PubMed] [Google Scholar]
- Weber M., Pompetzki W., Bonmann R., Weber M. (2014) Acetone, Ullmann’s encyclopedia of industrial chemistry, John Wiley & Sons Ltd, pp. 1–19. https://doi.org/10.1002/14356007.a01_079.pub4. [Google Scholar]
- Snelson A., Skinner H.A. (1961) Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc. 57, 2125. https://doi.org/10.1039/tf9615702125. [CrossRef] [Google Scholar]
- Kim T.G., Yeo Y.K., Song H.K. (1992) Chemical heat pump based on dehydrogenation and hydrogenation of I-propanol and acetone, Inter. J. Energy Res. 16, 9, 897–916. https://doi.org/10.1002/er.4440160910. [CrossRef] [Google Scholar]
- Thonon C.I., J.C. Jungers (1949) La déshydrogénation des alcools secondaires en phase liquide sur le nickel, Bull. Soc. Chim. Belg. 58, 7–9, 331–349. https://doi.org/10.1002/bscb.19490580706. [CrossRef] [Google Scholar]
- Noda M., Shinoda S., Saito Y. (1988) Liquid-phase dehydrogenation of 2-propanol by suspended nickel fine-particle catalyst, BCSJ 61, 3, 961–965. https://doi.org/10.1246/bcsj.61.961. [CrossRef] [Google Scholar]
- Gastauer P., Prévost M. (1993) Dehydrogenation of isopropanol at low temperatures in the vapor phase as a reaction for a chemical heat pump, J. Chem. Eng. Jpn. 26, 5, 580–583. https://doi.org/10.1252/jcej.26.580. [CrossRef] [Google Scholar]
- Meng N., Shinoda S., Saito Y. (1997) Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation, Int. J. Hydrogen Energy 22, 4, 361–367. https://doi.org/10.1016/S0360-3199(96)00084-5. [CrossRef] [Google Scholar]
- Xin F., Xu M., Huai X., Li X. (2013) Study on isopropanol–acetone–hydrogen chemical heat pump: liquid phase dehydrogenation of isopropanol using a reactive distillation column, Appl. Therm. Eng. 58, 1, 369–373. https://doi.org/10.1016/j.applthermaleng.2013.04.033. [CrossRef] [Google Scholar]
- Rioux R.M., Vannice M.A. (2003) Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts, J. Catal. 216, 1, 362–376. https://doi.org/10.1016/S0021-9517(02)00035-0. [CrossRef] [Google Scholar]
- Rioux R.M., Vannice M.A. (2005) Dehydrogenation of isopropyl alcohol on carbon-supported Pt and Cu–Pt catalysts, J. Catal. 233, 1, 147–165. https://doi.org/10.1016/j.jcat.2005.04.020. [CrossRef] [Google Scholar]
- Kvande I., Chen D., Rønning M., Venvik H.J., Holmen A. (2005) Highly active Cu-based catalysts on carbon nanofibers for isopropanol dehydrogenation, Catal. Today 100, 3, 391–395. https://doi.org/10.1016/j.cattod.2004.10.027. [CrossRef] [Google Scholar]
- Said A.E.-A.A., Abd El-Wahab M.M.M., Goda M.N. (2016) Selective synthesis of acetone from isopropyl alcohol over active and stable CuO–NiO nanocomposites at relatively low-temperature, Egypt. J. Basic appl. Sci. 3, 4, 357–365. https://doi.org/10.1016/j.ejbas.2016.08.004. [Google Scholar]
- Morales-Anzures F., Salinas-Hernández P., Ornelas-Gutiérrez C., Tzompantzi-Morales F.J., Pérez-Hernández R. (2020) Synthesis by the sol-gel method and characterization of Pt-promoted CuO/TiO2-ZrO2 catalysts for decomposition of 2-propanol, Catal. Today 349, 228–234. https://doi.org/10.1016/j.cattod.2018.03.017. [CrossRef] [Google Scholar]
- Abdelhamid H.N., Goda M.N., Said A.E.-A.A. (2020) Selective dehydrogenation of isopropanol on carbonized metal-organic frameworks, Nano-Struct. Nano-Objects 24, 100605. https://doi.org/10.1016/j.nanoso.2020.100605. [CrossRef] [Google Scholar]
- Malineni J., Keul H., Möller M. (2015) An efficient N-heterocyclic carbene-ruthenium complex: application towards the synthesis of polyesters and polyamides, Macromol. Rapid Commun. 36, 6, 547–552. https://doi.org/10.1002/marc.201400699. [CrossRef] [Google Scholar]
- Gnanaprakasam B., Balaraman E., Ben-David Y., Milstein D. (2011) Synthesis of peptides and pyrazines from β-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: ligand-controlled selectivity, Angew. Chem. Int. Ed. 50, 51, 12240–12244. https://doi.org/10.1002/anie.201105876. [CrossRef] [PubMed] [Google Scholar]
- Gunanathan C., Ben-David Y., Milstein D. (2007) Direct synthesis of amides from alcohols and amines with liberation of H2, Science 317, 5839, 790–792. https://doi.org/10.1126/science.1145295. [CrossRef] [PubMed] [Google Scholar]
- Ghosh S.C., Hong S.H. (2010) Simple RuCl3-catalyzed amide synthesis from alcohols and amines, Eur. J. Org. Chem. 2010, 22, 4266–4270. https://doi.org/10.1002/ejoc.201000362. [CrossRef] [Google Scholar]
- Saha B., Sengupta G., Sarbajna A., Dutta I., Bera J.K. (2014) Amide synthesis from alcohols and amines catalyzed by a RuII–N-Heterocyclic Carbene (NHC)–carbonyl complex, J. Organomet. Chem. 771, 124–130. https://doi.org/10.1016/j.jorganchem.2013.12.051. [CrossRef] [Google Scholar]
- Kar S., Xie Y., Zhou Q.Q., Diskin-Posner Y., Ben-David Y., Milstein D. (2021) Near-ambient-temperature dehydrogenative synthesis of the amide bond: mechanistic insight and applications, ACS Catal. 11, 12, 7383–7393. https://doi.org/10.1021/acscatal.1c00728. [CrossRef] [Google Scholar]
- Hu P., Fogler E., Diskin-Posner Y., Iron M.A., Milstein D. (2015) A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation, Nat. Commun. 6, 1, 1–7. https://doi.org/10.1038/ncomms7859. [CrossRef] [Google Scholar]
- Kothandaraman J., Kar S., Sen R., Goeppert A., Olah G.A., Prakash G.K.S. (2017) Efficient reversible hydrogen carrier system based on amine reforming of methanol, J. Am. Chem. Soc. 139, 7, 2549–2552. https://doi.org/10.1021/jacs.6b11637. [CrossRef] [PubMed] [Google Scholar]
- Nova A., Balcells D., Schley N.D., Dobereiner G.E., Crabtree R.H., Eisenstein O. (2010) An experimental-theoretical study of the factors that affect the switch between ruthenium-catalyzed dehydrogenative amide formation versus amine alkylation, Organometallics 29, 23, 6548–6558. https://doi.org/10.1021/om101015u. [CrossRef] [Google Scholar]
- Kumar A., Espinosa-Jalapa N.A., Leitus G., Diskin-Posner Y., Avram L., Milstein D. (2017) Direct synthesis of amides by dehydrogenative coupling of amines with either alcohols or esters: manganese pincer complex as catalyst, Angew. Chem. Int. Ed. 56, 47, 14992–14996. https://doi.org/10.1002/anie.201709180. [CrossRef] [PubMed] [Google Scholar]
- Shao Z., Li Y., Liu C., Ai W., Luo S.-P., Liu Q. (2020) Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation, Nat. Commun. 11, 1, 591. https://doi.org/10.1038/s41467-020-14380-3. [CrossRef] [Google Scholar]
- Xie Y., Hu P., Ben-David Y., Milstein D. (2019) A reversible liquid organic hydrogen carrier system based on methanol-ethylenediamine and ethylene urea, Angew. Chem. Int. Ed. 58, 15, 5105–5109. https://doi.org/10.1002/anie.201901695. [CrossRef] [PubMed] [Google Scholar]
- Bryant R.G. (2014) Polyimides, Ullmann’s encyclopedia of industrial chemistry, John Wiley & Sons Ltd, pp. 1–27. https://doi.org/10.1002/14356007.a21_253.pub2. [Google Scholar]
- Espinosa-Jalapa N.A., Kumar A., Leitus G., Diskin-Posner Y., Milstein D. (2017) Synthesis of cyclic imides by acceptorless dehydrogenative coupling of diols and amines catalyzed by a manganese pincer complex, J. Am. Chem. Soc. 139, 34, 11722–11725. https://doi.org/10.1021/jacs.7b08341. [CrossRef] [PubMed] [Google Scholar]
- Kumar A., Janes T., Espinosa-Jalapa N.A., Milstein D. (2018) Selective hydrogenation of cyclic imides to diols and amines and its application in the development of a liquid organic hydrogen carrier, J. Am. Chem. Soc. 140, 24, 7453–7457. https://doi.org/10.1021/jacs.8b04581. [CrossRef] [PubMed] [Google Scholar]
- Grellier M., Sabo-Etienne S. (2014) New perspectives in hydrogen storage based on RCH2NH2/RCN couples, Dalton Transac. 43, 17, 6283–6286. https://doi.org/10.1039/C3DT53583E. [CrossRef] [PubMed] [Google Scholar]
- Naeemi E., O’Connor D.G. (August 19, 2010.) Release and recovery from aliphatic primary amines or di-amines, US20100210878A1 (accessed 2021-03-16). https://patents.google.com/patent/US20100210878A1/en [Google Scholar]
- Naeemi E., O’Connor D.G., Naeemi M. (May 15, 2014.) Hydrogen storage system by catalytic dehydrogenation of amines, US20140134100A1 (accessed 2021-02-24). https://patents.google.com/patent/US20140134100A1/en [Google Scholar]
- Advantages | Asemblon Inc., Michael D Ramage (accessed 2022-11-18). https://www.asemblon.com/advantages. [Google Scholar]
- Sabatier P., Senderens J.-B. (1905) Application aux nitriles de la méthode d’hydrogénation directe par catalyse: synthèse d’amines primaires, secondaires et tertiaires, Comptes rendus hebdomadaires des séances de l’Académie des sciences, January 1, 1905, 482–486. [Google Scholar]
- Paal C., Gerum J. (1909) Über Katalytische Wirkungen Kolloidaler Metalle Der Platingruppe. VI, Reduktionskatalysen Mit Kolloidalem Palladium. Berichte der deutschen chemischen Gesellschaft 42, 2, 1553–1560. https://doi.org/10.1002/cber.19090420222. [CrossRef] [Google Scholar]
- Braun J.V., Blessing G., Katalytische Zobel F., Gegenwart Hydrierungen Unter Druck Bei, von Nickelsalzen, VI.: Nitrile. (1923) Berichte der deutschen chemischen Gesellschaft (A and B Series) 56, 8, 1988–2001. https://doi.org/10.1002/cber.19230560845. [CrossRef] [Google Scholar]
- Carothers W.H., Jones G.A. (1925) THE preparation of some primary amines by the catalytic reduction of nitrileS, J. Am. Chem. Soc. 47, 12, 3051–3057. https://doi.org/10.1021/ja01689a034. [CrossRef] [Google Scholar]
- Aller B.V. (1957) Cobalt hydrogenation catalysts. i. the preparation of the catalyst, J. Appl. Chem. 7, 3, 130–134. https://doi.org/10.1002/jctb.5010070307. [CrossRef] [Google Scholar]
- Adkins H. (1937) 1892-1949 reactions of hydrogen with organic compounds over copper-chromium oxide and nickel catalysts, University of Wisconsin Press (accessed 2022-11-18). https://scholar.google.com/scholar_lookup?title=Reactions+of+hydrogen+with+organic+compounds+over+copper-chromium+oxide+and+nickel+catalysts&author=Adkins%2C+Homer&publication_year=1937 [Google Scholar]
- Huang Y., Sachtler W.M.H. (1999) On the mechanism of catalytic hydrogenation of nitriles to amines over supported metal catalysts, Appl. Catal. A Gen. 182, 2, 365–378. https://doi.org/10.1016/S0926-860X(99)00035-6. [CrossRef] [Google Scholar]
- Barnett C. (1969) Hydrogenation of aliphatic nitriles over transition metal borides, Product R&D 8, 2, 145–149. https://doi.org/10.1021/i360030a009. [CrossRef] [Google Scholar]
- López-De Jesús Y.M., Johnson C.E., Monnier J.R., Williams C.T. (2010) Selective hydrogenation of benzonitrile by alumina-supported Ir–Pd catalysts, Top Catal. 53, 15, 1132–1137. https://doi.org/10.1007/s11244-010-9546-0. [CrossRef] [Google Scholar]
- Ryabchuk P., Agostini G., Pohl M.-M., Lund H., Agapova A., Junge H., Junge K., Beller M. (2018) Intermetallic nickel silicide nanocatalyst – a non-noble metal-based general hydrogenation catalyst, Sci. Adv. 4, 6, eaat0761. https://doi.org/10.1126/sciadv.aat0761. [CrossRef] [Google Scholar]
- Murugesan K., Senthamarai T., Sohail M., Alshammari S. A., Pohl, M.-M., Beller, V. Jagadeesh, R. (2018) Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts, Chem. Sci. 9, 45, 8553–8560. https://doi.org/10.1039/C8SC02807A. [CrossRef] [PubMed] [Google Scholar]
- Segobia D.J., Trasarti A.F., Apesteguía C.R. (2015) Chemoselective hydrogenation of unsaturated nitriles to unsaturated primary amines: conversion of cinnamonitrile on metal-supported catalysts, Appl. Catal. A Gen. 494, 41–47. https://doi.org/10.1016/j.apcata.2015.01.028. [CrossRef] [Google Scholar]
- Chandrashekhar V.G., Senthamarai T., Kadam R.G., Malina O., Kašlík J., Zbořil R., Gawande M.B., Jagadeesh R.V., Beller M. (2022) Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives, Nat. Catal. 5, 1, 20–29. https://doi.org/10.1038/s41929-021-00722-x. [Google Scholar]
- Segobia D.J., Trasarti A.F., Apesteguía C.R. (2012) Hydrogenation of nitriles to primary amines on metal-supported catalysts: highly selective conversion of butyronitrile to n-butylamine, Appl. Catal. A Gen. 445–446, 69–75. https://doi.org/10.1016/j.apcata.2012.08.006. [CrossRef] [Google Scholar]
- Liu C., Wang T. (2014) Isophthalonitrile (IPN) hydrogenation over K modified Ni–Co supported catalysts: catalyst characterization and performance evaluation, RSC Adv. 4, 109, 63725–63733. https://doi.org/10.1039/C4RA09607J. [CrossRef] [Google Scholar]
- Lévay K., Hegedűs L. (2019) Recent achievements in the hydrogenation of nitriles catalyzed by transitional metals, Curr. Org. Chem. 23, 18, 1881–1900. https://doi.org/10.2174/1385272823666191007160341. [CrossRef] [Google Scholar]
- Lévay K., Hegedűs L. (2018) Selective heterogeneous catalytic hydrogenation of nitriles to primary amines, Period. Polytech. Chem. Eng 62, 4, 476–488. https://doi.org/10.3311/PPch.12787. [Google Scholar]
- Kamiguchi S., Nakamura A., Suzuki A., Kodomari M., Nomura M., Iwasawa Y., Chihara T. (2005) Catalytic dehydrogenation of aliphatic amines to nitriles, imines, or vinylamines and dealkylation of tertiary aliphatic amines over halide cluster catalysts of group 5 and 6 transition metals, J. Catal. 230, 1, 204–213. https://doi.org/10.1016/j.jcat.2004.11.034. [CrossRef] [Google Scholar]
- Tseng K.-N.T., Rizzi A.M., Szymczak N.K. (2013) Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc. 135, 44, 16352–16355. https://doi.org/10.1021/ja409223a. [CrossRef] [PubMed] [Google Scholar]
- Wang Z., Belli J., Jensen M. C., (2011) Homogeneous dehydrogenation of liquid organic hydrogen carriers catalyzed by an iridium PCP complex, Faraday Discuss. 151, 297–305. https://doi.org/10.1039/C1FD00002K. [CrossRef] [PubMed] [Google Scholar]
- Dutta I., Yadav S., Sarbajna A., De S., Hölscher M., Leitner W., Bera J.K. (2018) Double dehydrogenation of primary amines to nitriles by a ruthenium complex featuring pyrazole functionality, J. Am. Chem. Soc. 140, 28, 8662–8666. https://doi.org/10.1021/jacs.8b05009. [CrossRef] [PubMed] [Google Scholar]
- Hale L.V.A., Malakar T., Tseng K.-N.T., Zimmerman P.M., Paul A., Szymczak N.K. (2016) The mechanism of acceptorless amine double dehydrogenation by N, N, N-amide ruthenium(II) hydrides: a combined experimental and computational study, ACS Catal. 6, 8, 4799–4813. https://doi.org/10.1021/acscatal.6b01465. [CrossRef] [Google Scholar]
- Kannan M., Muthaiah S. (2019) Extending the chemistry of hexamethylenetetramine in ruthenium-catalyzed amine oxidation, Organometallics 38, 19, 3560–3567. https://doi.org/10.1021/acs.organomet.9b00399. [CrossRef] [Google Scholar]
- Kannan M., Barteja P., Devi P., Muthaiah S. (2020) Acceptorless dehydrogenation of amines and alcohols using simple ruthenium chloride, J. Catal. 386, 1–11. https://doi.org/10.1016/j.jcat.2020.03.025. [CrossRef] [Google Scholar]
- Kannan M., Muthaiah S. (2020) Ruthenium(II)-complex-catalyzed acceptorless double dehydrogenation of primary amines to nitriles, Synlett 31, 11, 1073–1076. https://doi.org/10.1055/s-0040-1708016. [CrossRef] [Google Scholar]
- Nie X., Zheng Y., Ji L., Fu H., Chen H., Li R. (2020) Acceptorless dehydrogenation of amines to nitriles catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated bimetallic ruthenium (II) complex, J. Catal. 391, 378–385. https://doi.org/10.1016/j.jcat.2020.09.005. [CrossRef] [Google Scholar]
- Lu G.-P., Li X., Zhong L., Li S., Chen F. (2019) Ru@UiO-66(Ce) catalyzed acceptorless dehydrogenation of primary amines to nitriles: the roles of Lewis acid-base pairs in the reaction, Green Chem. 21, 19, 5386–5393. https://doi.org/10.1039/C9GC02181G. [CrossRef] [Google Scholar]
- Feldhues U., Schäfer H.J. (1982) Oxidation of primary aliphatic amines to nitriles at the nickel hydroxide electrode, Synthesis 1982, 2, 145–146. https://doi.org/10.1055/s-1982-29721. [CrossRef] [Google Scholar]
- Huang Y., Chong X., Liu C., Liang Y., Zhang B. (2018) Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode, Angew. Chem. Int. Ed. 57, 40, 13163–13166. https://doi.org/10.1002/anie.201807717. [CrossRef] [PubMed] [Google Scholar]
- Mondal I., Hausmann J.N., Vijaykumar G., Mebs S., Dau H., Driess M., Menezes P.W. (2022) Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines, Adv. Energy Mater. 12, 25, 2200269. https://doi.org/10.1002/aenm.202200269. [CrossRef] [Google Scholar]
- Qian W., Yoda Y., Hirai Y., Ishihara A., Kabe T. (1999) Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts, Appl. Catal. A Gen. 184, 1, 81–88. https://doi.org/10.1016/S0926-860X(99)00083-6. [CrossRef] [Google Scholar]
- Navarro R.M., Pawelec B., Trejo J.M., Mariscal R., Fierro J.L.G. (2000) Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts, J. Catal. 189, 1, 184–194. https://doi.org/10.1006/jcat.1999.2693. [CrossRef] [MathSciNet] [Google Scholar]
- Ratner B.D., Naeemi E. (March 6, 2007.) Method for hydrogen storage and delivery, US7186396B2 (accessed 2022-11-30). https://patents.google.com/patent/US7186396/en [Google Scholar]
- Zhao H.Y., Oyama S.T., Naeemi E.D. (2010) Hydrogen storage using heterocyclic compounds: the hydrogenation of 2-methylthiophene, Catal. Today 149, 1, 172–184. https://doi.org/10.1016/j.cattod.2009.02.039. [CrossRef] [Google Scholar]
- Luo J., Rauch M., Avram L., Ben-David Y., Milstein D. (2020) Catalytic hydrogenation of thioesters, thiocarbamates, and thioamides, J. Am. Chem. Soc. 142, 52, 21628–21633. https://doi.org/10.1021/jacs.0c10884. [CrossRef] [PubMed] [Google Scholar]
- Luo J., Rauch M., Avram L., Diskin-Posner Y., Shmul G., Ben-David Y., Milstein D. (2020) Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution, Nat. Catal. 3, 11, 887–892. [CrossRef] [Google Scholar]
- Rauch M., Luo J., Avram L., Ben-David Y., Milstein D. (2021) Mechanistic investigations of ruthenium catalyzed dehydrogenative thioester synthesis and thioester hydrogenation, ACS Catal. 11, 5, 2795–2807. https://doi.org/10.1021/acscatal.1c00418. [CrossRef] [Google Scholar]
- Luo W., Zakharov L.N., Liu S.-Y. (2011) 1,2-BN cyclohexane: synthesis, structure, dynamics, and reactivity, J. Am. Chem. Soc. 133, 33, 13006–13009. https://doi.org/10.1021/ja206497x. [CrossRef] [PubMed] [Google Scholar]
- Müller K., Stark K., Müller B., Arlt W. (2012) Amine borane based hydrogen carriers: an evaluation, Energy Fuels 26, 6, 3691–3696. https://doi.org/10.1021/ef300516m. [CrossRef] [Google Scholar]
- Campbell P.G., Zakharov L.N., Grant D.J., Dixon D.A., Liu S.-Y. (2010) Hydrogen storage by boron–nitrogen heterocycles: a simple route for spent fuel regeneration, J. Am. Chem. Soc. 132, 10, 3289–3291. https://doi.org/10.1021/ja9106622. [CrossRef] [PubMed] [Google Scholar]
- Liu S.-Y. (2015) Hydrogen Storage by Novel CBN Heterocycle Materials, DE-FG36-08GO18143. Univ. of Oregon, Eugene, OR (United States). https://doi.org/10.2172/1221989 [CrossRef] [Google Scholar]
- Dai Y., Zhang X., Liu Y., Yu H., Su W., Zhou J., Ye Q., Huang Z. (2022) 1,6;2,3-Bis-BN cyclohexane: synthesis, structure, and hydrogen release, J. Am. Chem. Soc. 144, 19, 8434–8438. https://doi.org/10.1021/jacs.1c13581. [CrossRef] [PubMed] [Google Scholar]
- Technologies. HSL TECH (accessed 2023-08-31). https://www.hsl.tech/technologies. [Google Scholar]
- Finholt A.E., Jr Bond A.C., Wilzbach K.E., Schlesinger H.I. (1947) The preparation and some properties of hydrides of elements of the fourth group of the periodic system and of their organic derivatives, J. Am. Chem. Soc. 69, 11, 2692–2696. https://doi.org/10.1021/ja01203a041. [CrossRef] [Google Scholar]
- Aoyagi K., Ohmori Y., Inomata K., Matsumoto K., Shimada S., Sato K., Nakajima Y. (2019) Synthesis of hydrosilanes via lewis-base-catalysed reduction of alkoxy silanes with NaBH4, Chem. Commun. 55, 42, 5859–5862. https://doi.org/10.1039/C9CC01961H. [CrossRef] [PubMed] [Google Scholar]
- Durin G., Berthet J.-C., Nicolas E., Thuéry P., Cantat T. (2022) The role of (TBuPOCOP)Ir(I) and Iridium(III) pincer complexes in the catalytic hydrogenolysis of silyl triflates into hydrosilanes, Organometallics 41, 14, 1786–1796. https://doi.org/10.1021/acs.organomet.1c00576. [CrossRef] [Google Scholar]
- Mitsudome T., Arita S., Mori H., Mizugaki T., Jitsukawa K., Kaneda K. (2008) Supported silver-nanoparticle-catalyzed highly efficient aqueous oxidation of phenylsilanes to silanols, Angew. Chem. Int. Ed. 47, 41, 7938–7940. https://doi.org/10.1002/anie.200802761. [CrossRef] [PubMed] [Google Scholar]
- Han W.-S., Kim T.-J., Kim S.-K., Kim Y., Kim Y., Nam S.-W., Kang S.O. (2011) Silane-based hydrogen storage materials for fuel cell application: hydrogen release via methanolysis and regeneration by hydride reduction from organosilanes, Int. J. Hydrogen Energy 36, 19, 12305–12312. https://doi.org/10.1016/j.ijhydene.2011.06.118. [CrossRef] [Google Scholar]
- Brunel J.M. (2010) New efficient hydrogen process production from organosilane hydrogen carriers derivatives, Int. J. Hydrogen Energy 35, 8, 3401–3405. https://doi.org/10.1016/j.ijhydene.2010.01.116. [CrossRef] [Google Scholar]
- Mukherjee D., Thompson R.R., Ellern A., Sadow A.D. (2011) Coordinatively saturated tris(oxazolinyl)borato zinc hydride-catalyzed cross dehydrocoupling of silanes and alcohols, ACS Catal. 1, 7, 698–702. https://doi.org/10.1021/cs2001016. [CrossRef] [Google Scholar]
- Ventura-Espinosa D., Carretero-Cerdán A., Baya M., García H., Mata J.A. (2017) Catalytic dehydrogenative coupling of hydrosilanes with alcohols for the production of hydrogen on-demand: application of a silane/alcohol pair as a liquid organic hydrogen carrier, Chem. A Eur. J. 23, 45, 10815–10821. https://doi.org/10.1002/chem.201700243. [CrossRef] [PubMed] [Google Scholar]
- Ventura-Espinosa D., Sabater S., Carretero-Cerdán A., Baya M., Mata J.A. (2018) High production of hydrogen on demand from silanes catalyzed by iridium complexes as a versatile hydrogen storage system, ACS Catal. 8, 3, 2558–2566. https://doi.org/10.1021/acscatal.7b04479. [CrossRef] [Google Scholar]
- Porcar R., Mollar-Cuni A., Ventura-Espinosa D., Luis V., S. E., García-Verdugo, A. Mata, J. A Simple, (2022) Safe and robust system for hydrogenation “without high-pressure gases” under batch and flow conditions using a liquid organic hydrogen carrier, Vol. 24, Green Chemistry, pp. 2036–2043. https://doi.org/10.1039/D1GC03850H. [Google Scholar]
- Dai Y., Xing P., Cui X., Li Z., Zhang X. (2019) Coexistence of Cu(II) and Cu(I) in Cu ion-doped Zeolitic Imidazolate Frameworks (ZIF-8) for the dehydrogenative coupling of silanes with alcohols, Dalton Trans. 48, 44, 16562–16568. https://doi.org/10.1039/C9DT03181B. [CrossRef] [PubMed] [Google Scholar]
- Deyko G.S., Glukhov L.M., Kustov L.M. (2020) Hydrogen storage in organosilicon ionic liquids, Int. J. Hydrogen Energy 45, 58, 33807–33817. https://doi.org/10.1016/j.ijhydene.2020.09.107. [CrossRef] [Google Scholar]
- Schwarz D.E., Cameron T.M., Jeffrey Hay P., Scott B.L., Tumas W., Thorn D.L. (2005) Hydrogen evolution from organic “hydrides”, Chem. Commun. 47, 5919–5921. https://doi.org/10.1039/B511884K. [CrossRef] [Google Scholar]
- Proceedings of the 2000 U.S. DOE Hydrogen Program Review. 995. [Google Scholar]
- Anastas P., Eghbali N. (2010) Green chemistry: principles and practice, Chem. Soc. Rev. 39, 1, 301–312. https://doi.org/10.1039/B918763B. [CrossRef] [PubMed] [Google Scholar]
- Brigljević B., Lee B., Dickson R., Kang S., Liu J.J., Lim H. (2020) Concept for temperature-cascade hydrogen release from organic liquid carriers coupled with SOFC power generation, Cell Rep. Phys. Sci. 1, 3, 100032. https://doi.org/10.1016/j.xcrp.2020.100032. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.