Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
Synthesis and characterisation of porous materials for clean energy applications
|
|
---|---|---|
Numéro d'article | 33 | |
Nombre de pages | 6 | |
DOI | https://doi.org/10.2516/stet/2023031 | |
Publié en ligne | 14 novembre 2023 |
- Chu S., Majumdar A. (2012) Opportunities and challenges for a sustainable energy future, Nature 488, 294–303. [CrossRef] [PubMed] [Google Scholar]
- Antonakakis N., Chatziantoniou I., Filis G. (2017) Energy consumption, CO2 emissions, and economic growth: an ethical dilemma, Renew. Sustain. Energy Rev. 68, 808–824. [CrossRef] [Google Scholar]
- Canepa P., Sai Gautam G., Hannah D.C., Malik R., Liu M., Gallagher K.G., Persson K.A., Ceder G. (2017) Odyssey of multivalent cathode materials: open questions and future challenges, Chem. Rev. 117, 4287–4341. [CrossRef] [PubMed] [Google Scholar]
- Goodenough J.B., Kim Y. (2010) Challenges for rechargeable Li batteries, Chem. Mater. 22, 587–603. [CrossRef] [Google Scholar]
- Divya K.C., Østergaard J. (2009) Battery energy storage technology for power systems—an overview, Electr. Power Syst. Res. 79, 511–520. [CrossRef] [Google Scholar]
- Mizushima K., Jones P.C., Wiseman P.J., Goodenough J.B. (1980) LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density, Mater. Res. Bull. 15, 783–789. [CrossRef] [Google Scholar]
- Zhang H., Mao C., Li J., Chen R. (2017) Advances in electrode materials for Li-based rechargeable batteries, RSC Adv. 7, 33789–33811. [CrossRef] [Google Scholar]
- Lv W., Wang Z., Cao H., Sun Y., Zhang Y., Sun Z., (2018) A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustain. Chem. Eng. 6, 1504–1521. [CrossRef] [Google Scholar]
- Dutta T., Kim K.-H., Deep A., Szulejko J.E., Vellingiri K., Kumar S., Kwon E.E., Yun S.-T. (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management, Renew. Sustain. Energy Rev. 82, 3694–3704. [CrossRef] [Google Scholar]
- Perez E., Navarro Amador R., Carboni M., Meyer D. (2016) In-situ precipitation of metal–organic frameworks from a simulant battery waste solution, Mater. Lett. 167, 188–191. [CrossRef] [Google Scholar]
- Perez E., Andre M.-L., Navarro Amador R., Hyvrard F., Borrini J., Carboni M., Meyer D. (2016) Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media, J. Hazard. Mater. 317, 617–621. [CrossRef] [Google Scholar]
- Yang X.-Y., Chen L.-H., Li Y., Rooke J.C., Sanchez C., Su B.-L. (2017) Hierarchically porous materials: synthesis strategies and structure design, Chem. Soc. Rev. 46, 481–558. [CrossRef] [PubMed] [Google Scholar]
- Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. (2013) The chemistry and applications of metal-organic frameworks, Science 341, 1230444–1230444. [CrossRef] [PubMed] [Google Scholar]
- Du Z.-Q., Li Y.-P., Wang X.-X., Wang J., Zhai Q.-G. (2019) Enhanced electrochemical performance of Li–Co-BTC ternary metal–organic frameworks as cathode materials for lithium-ion batteries, Dalton Trans. 48, 2013–2018. [CrossRef] [PubMed] [Google Scholar]
- Ma Y., He J., Kou Z., Elshahawy A.M., Hu Y., Guan C., Liang X., Wang J. (2018) MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes, Adv. Mater. Interfaces 5, 1800222. [CrossRef] [Google Scholar]
- Wu J.-F., Guo X. (2019) MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries, J. Mater. Chem. A 7, 2653–2659. [CrossRef] [Google Scholar]
- Cognet M., Gutel T., Peralta D., Maynadié J., Carboni M., Meyer D. (2017) Communication—iron(II)-benzene phosphonate coordination polymers as an efficient active material for negative electrode of lithium-ion batteries, J. Electrochem. Soc. 164, A2552–A2554. [CrossRef] [Google Scholar]
- Xia W., Mahmood A., Zou R., Xu Q. (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Env. Sci 7, 1837–1866. [CrossRef] [Google Scholar]
- Xu X., Cao R., Jeong S., Cho J. (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries, Nano Lett. 12, 4988–4991. [CrossRef] [PubMed] [Google Scholar]
- Yu Z., Bai Y., Zhang S., Liu Y., Zhang N., Wang G., Wei J., Wu Q., Sun K., Appl A.C.S. (2018) Metal–organic framework-derived Co3ZnC/Co embedded in nitrogen-doped carbon nanotube-grafted carbon polyhedra as a high-performance electrocatalyst for water splitting, Mater. Interfaces 10, 6245–6252. [CrossRef] [PubMed] [Google Scholar]
- Zhong Y., Xia X., Shi F., Zhan J., Tu J., Fan H.J. (2016) Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci. 3, 1500286. [CrossRef] [MathSciNet] [Google Scholar]
- Naguib M., Come J., Dyatkin B., Presser V., Taberna P.-L., Simon P., Barsoum M.W., Gogotsi Y. (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16, 61–64. [CrossRef] [Google Scholar]
- Gan Q., He H., Zhao K., He Z., Liu S. (2018) Morphology-dependent electrochemical performance of Ni-1,3,5-benzenetricarboxylate metal-organic frameworks as an anode material for Li-ion batteries, J. Colloid Interface Sci. 530, 127–136. [CrossRef] [Google Scholar]
- Zhao H., Liu L., Hu Z., Sun L., Han S., Liu Y., Chen D., Liu X. (2016) Neutron diffraction analysis and electrochemical performance of spinel Ni(Mn2−xCox)O4 as anode materials for lithium ion battery, Mater. Res. Bull. 77, 265–270. [CrossRef] [Google Scholar]
- Lee H.H., Lee J.B., Park Y., Park K.H., Okyay M.S., Shin D.-S., Kim S., Park J., Park N., An B.-K., Jung Y.S., Lee H.-W., Lee K.T., Hong S.Y., Appl A.C.S. (2018) Coordination polymers for high-capacity Li-ion batteries: metal-dependent solid-state reversibility, Mater. Interfaces 10, 22110–22118. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.