Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.2516/stet/2023023 | |
Published online | 20 October 2023 |
- United Nations. The 17 goals – sustainable development (un.org). Available at: https://sdgs.un.org/goals. [Google Scholar]
- de Hemptinne J.-C., Kontogeorgis G.M., Dohrn R., Economou I.G., Ten Kate A., Kuitunen S., Fele Žilnik L., de Angelis M.G., Vesovic V. (2022) A view on the future of applied thermodynamics, Ind. Eng. Chem. Res. 61, 39, 14664–14680. https://doi.org/10.1021/acs.iecr.2c01906. [CrossRef] [Google Scholar]
- van der Waals J.D. (1873) Over de continuiteit van den gas en vloeistoftestand (On the continuity of the gas and liquid state), Hoogeschool te Leiden. [Google Scholar]
- Calsep – PVTSim Nova. https://www.calsep.com/pvtsim-nova/. [Google Scholar]
- Petroleum Experts – PVTP. https://www.petex.com/products/ipm-suite/pvtp/. [Google Scholar]
- KBC – Multiflash. https://www.kbc.global/software/advanced-thermodynamics/. [Google Scholar]
- SPECS. https://www.cere.dtu.dk/expertise/software/specs. [Google Scholar]
- ProSim – Simulis Thermodynamics. https://www.prosim.net/en/product/simulis-thermodynamics-mixture-properties-and-fluid-phase-equilibria-calculations/. [Google Scholar]
- Bell I.H., Wronski J., Quoilin S., Lemort V. (2014) Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp, Ind. Eng. Chem. Res. 53, 6, 2498–2508. https://doi.org/10.1021/ie4033999. [CrossRef] [Google Scholar]
- Bell C.a.C. (2016–2020) Thermo: chemical properties component of chemical engineering design. https://github.com/CalebBell/thermo. [Google Scholar]
- Chaparro G., Mejía A. (2020) Phasepy: a Python based framework for fluid phase equilibria and interfacial properties computation, J. Comput. Chem. 41, 29, 2504–2526. https://doi.org/10.1002/jcc.26405. [CrossRef] [PubMed] [Google Scholar]
- Wilhelmsen Ø., Aasen A., Skaugen G., Aursand P., Austegard A., Aursand E., Gjennestad M.A., Lund H., Linga G., Hammer M. (2017) Thermodynamic modeling with equations of state: present challenges with established methods, Ind. Eng. Chem. Res. 56, 13, 3503–3515. https://doi.org/10.1021/acs.iecr.7b00317. [CrossRef] [Google Scholar]
- Rehner P., Bauer G. (2022) FeOs – a framework for equations of state and classical density functional theory. https://github.com/feos-org/feos. [Google Scholar]
- Bell I.H., Deiters U.K., Leal A.M.M. (2022) Implementing an equation of state without derivatives: teqp, Ind. Eng. Chem. Res. 61, 17, 6010–6027. https://doi.org/10.1021/acs.iecr.2c00237. [CrossRef] [Google Scholar]
- Walker P.J., Yew H.-W., Riedemann A. (2022) Clapeyron.jl: an extensible, open-source fluid thermodynamics toolkit, Ind. Eng. Chem. Res. 61, 20, 7130–7153. https://doi.org/10.1021/acs.iecr.2c00326. [CrossRef] [Google Scholar]
- https://www.swig.org/. [Google Scholar]
- https://www.colan.org/. [Google Scholar]
- Bai C., Dallasega P., Orzes G., Sarkis J. (2020) Industry 4.0 technologies assessment: a sustainability perspective, Int. J. Prod. Econ. 229, 107776. https://doi.org/10.1016/j.ijpe.2020.107776. [CrossRef] [Google Scholar]
- https://cmake.org/. [Google Scholar]
- http://google.github.io/googletest/. [Google Scholar]
- https://www.jenkins.io/. [Google Scholar]
- https://subversion.apache.org/. [Google Scholar]
- https://git-scm.com/. [Google Scholar]
- IEA (2022) Carbon capture, utilisation and storage, IEA, Paris. https://www.iea.org/reports/carbon-capture-utilisation-and-storage-2. [Google Scholar]
- https://www.ifpenergiesnouvelles.com/article/launch-innovative-european-3d-project-capture-and-storage-co2-industrial-scale. [Google Scholar]
- Tsanas C., Stenby E.H., Yan W. (2019) Calculation of multiphase chemical equilibrium in electrolyte solutions with non-stoichiometric methods, Fluid Phase Equilib. 482, 81–98. https://doi.org/10.1016/j.fluid.2018.10.008. [CrossRef] [Google Scholar]
- Deshmukh R.D., Mather A.E. (1981) A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions, Chem. Eng. Sci. 36, 2, 355–362. https://doi.org/10.1016/0009-2509(81)85015-4. [CrossRef] [Google Scholar]
- Chen C.C., Britt H.I., Boston J.F., Evans L.B. (1982) Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems, AIChE J. 28, 4, 588–596. [CrossRef] [Google Scholar]
- Tsanas C., de Hemptinne J.-C., Mougin P. (2022) Calculation of phase and chemical equilibrium for multiple ion-containing phases including stability analysis, Chem. Eng. Sci. 248, 117147. https://doi.org/10.1016/j.ces.2021.117174. [CrossRef] [Google Scholar]
- CooresFlow, https://www.ifpenergiesnouvelles.com/innovation-and-industry/our-expertise/climate-environment-and-circular-economy/co2-capture-storage-and-use/our-solutions. [Google Scholar]
- Estublier A., Fornel A., Brosse É., Houel P., Lecomte J.-C., Delmas J., Vincké O. (2017) Simulation of a potential CO2 storage in the West Paris Basin: site characterization and assessment of the long-term hydrodynamical and geochemical impacts induced by the CO2 Injection, Oil Gas Sci. Technol. Rev. IFP Energies nouvelles 72, 4. https://doi.org/10.2516/ogst/2017021. [Google Scholar]
- Soreide I., Whitson C. (1992) Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine, Fluid Phase Equilib. 77, 217–240. [CrossRef] [Google Scholar]
- Chabab S., Théveneau P., Corvisier J., Coquelet C., Paricaud P., Houriez C., Ahmar E.E. (2019) Thermodynamic study of the CO2–H2O–NaCl system: Measurements of CO2 solubility and modeling of phase equilibria using Soreide and Whitson, electrolyte CPA and SIT models, Int. J. Greenhouse Gas Control 91, 102825. https://doi.org/10.1016/j.ijggc.2019.102825. [CrossRef] [Google Scholar]
- Yan W., Huang S., Stenby E.H. (2011) Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density, Int. J. Greenhouse Gas Control 5, 6, 1460–1477. https://doi.org/10.1016/j.ijggc.2011.08.004. [CrossRef] [Google Scholar]
- Messabeb H., Contamine F., Cézac P., Serin J.P., Gaucher E.C. (2016) Experimental measurement of CO2 solubility in aqueous NaCl solution at temperature from 323.15 to 423.15 K and pressure of up to 20 MPa, J. Chem. Eng. Data 61, 10, 3573–3584. https://doi.org/10.1021/acs.jced.6b00505. [CrossRef] [Google Scholar]
- Koschel D., Coxam J.Y., Rodier L., Majer V. (2006) Enthalpy and solubility data of CO2 in water and NaCl (aq) at conditions of interest for geological sequestration, Fluid Phase Equilib. 247, 1–2, 107–120. [CrossRef] [Google Scholar]
- TechnipFMC, What we do. Available at: https://www.technipfmc.com/en/what-we-do/subsea/subsea-systems/subsea-infrastructure/flexible-pipes/. [Google Scholar]
- Aubry J.C., Saas J.N., Taravel-Condat C., Benjelloun-Dabaghi Z., de Hemptinne J.C. (2002) Moldi(Tm): a fluid permeation model to calculate the annulus composition in flexible pipes, Oil & Gas Sci. Technol. Rev. IFP 57, 2, 177–192. https://doi.org/10.2516/ogst:2002014. [CrossRef] [Google Scholar]
- Lefebvre X., Khvoenkova N., de Hemptinne J.-C., Lefrançois L., Radenac B., Pignoc-Chicheportiche S., Plennevaux C. (2022) Prediction of flexible pipe annulus composition by numerical modeling: identification of key parameters, Sci. Tech. Energy Transit. 77. https://doi.org/10.2516/stet/2022008. [Google Scholar]
- Kontogeorgis G.M., Voutsas E.C., Yakoumis I.V., Tassios D.P. (1996) An equation of state for associating fluids, Ind. Eng. Chem. Res. 35, 11, 4310–4318. [CrossRef] [Google Scholar]
- Gross J., Sadowski G. (2001) Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40, 1244–1260. [CrossRef] [Google Scholar]
- de Boer R.B., Leerlooyer K., Eigner M.R.P., van Bergen A.R.D. (1995) Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors, SPE Prod. Facil. 10, 1, 55–61. https://doi.org/10.2118/24987-PA. [CrossRef] [Google Scholar]
- Buenrostro-Gonzalez E., Lira-Galeana C., Gil-Villegas A., Wu J. (2004) Asphaltene precipitation in crude oils: theory and experiments, AIChE J. 50, 10, 2552–2570. https://doi.org/10.1002/aic.10243. [CrossRef] [Google Scholar]
- Szewczyk V. (1997) Modélisation thermodynamique compositionelle de la floculation des bruts asphalténiques, PhD Thesis, INPL, Vandoeuvre-les-Nancy, France. [Google Scholar]
- Szewczyk V., Behar E. (1999) Compositional model for predicting asphaltene flocculation, Fluid Phase Equilib. 158–160, 459–469. [CrossRef] [Google Scholar]
- Mougin P., Behar E., Szewczyk V. Floculation des bruts asphalténiques: Présentation d’un modèle compositionnel, IFPEN Internal Report 44460, 1998. [Google Scholar]
- Pina A., Mougin P. Modélisation des seuils de floculation par ajout de solvant/floculant. Incidence du choix du module de calcul de flash, IFPEN Internal Report 53130, 2000. [Google Scholar]
- Peneloux A., Abdoul W., Rauzy E. (1989) Excess functions and equations of state, Fluid Phase Equilib. 47, 2–3, 115–132. [CrossRef] [Google Scholar]
- Abdoul W., Rauzy E., Peneloux A. (1991) Group-contribution equation of state for correlating and predicting thermodynamic properties of weakly polar and non-associating mixtures; binary and multicomponent systems, Fluid Phase Equilib. 68, 47–102. [CrossRef] [Google Scholar]
- Jaubert J.N., Mutelet F. (2004) VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method, Fluid Phase Equilib. 224, 285–304. [CrossRef] [Google Scholar]
- Qian J.-W., Privat R., Jaubert J.-N. (2013) Predicting the phase equilibria, critical phenomena, and mixing enthalpies of binary aqueous systems containing alkanes, cycloalkanes, aromatics, alkenes, and gases (N2, CO2, H2S, H2) with the PPR78 equation of state, Ind. Eng. Chem. Res. 52, 46, 16457–16490. [CrossRef] [Google Scholar]
- Li Z., Firoozabadi A. (2010) Cubic-plus-association equation of state for asphaltene precipitation in live oils, Energy Fuel 24, 5, 2956–2963. https://doi.org/10.1021/ef9014263. [CrossRef] [Google Scholar]
- Carbone - Kappa Engineering. https://www.kappaeng.com/software/carbone. [Google Scholar]
- Eslamimanesh A., Mohammadi A.H., Richon D., Naidoo P., Ramjugernath D. (2012) Application of gas hydrate formation in separation processes: a review of experimental studies, J. Chem. Thermodyn. 46, 62–71. https://doi.org/10.1016/j.jct.2011.10.006. [CrossRef] [Google Scholar]
- Van der Waals J.H., Platteeuw J.C. (1959) Clathrate solutions, Adv. Chem. Phys. 2, 1, 1–57. [Google Scholar]
- Deaton W.M., Frost E.M. Jr. (1946) Gas hydrates and their relation to the operation of natural-gas pipe lines, vol. 8, U.S. Bureau of Mines Monograph, 101p. [Google Scholar]
- Kobayashi R., Katz D.L. (1949) Methane Hydrate at High Pressure, J. Petrol. Technol. 1, 3, 66–70. https://doi.org/10.2118/949066-G. [CrossRef] [Google Scholar]
- Makogon T.Y., Sloan E.D. Jr. (1994) Phase equilibrium for methane hydrate from 190 to 262 K, J. Chem. Eng. Data 39, 2, 351–353. https://doi.org/10.1021/je00014a035. [CrossRef] [Google Scholar]
- Falabella B.J. (1975) A study of natural gas hydrates, University of Massachusetts. [Google Scholar]
- van Cleeff A., Diepen G.A.M. (1960) Gas hydrates of nitrogen and oxygen, Recl. Trav. Chim. Pays-Bas 79, 6, 582–586. https://doi.org/10.1002/recl.19600790606. [Google Scholar]
- Vinš V., Jäger A., Hrubý J., Span R. (2017) Model for gas hydrates applied to CCS systems part II. Fitting of parameters for models of hydrates of pure gases, Fluid Phase Equilib. 435, 104–117. https://doi.org/10.1016/j.fluid.2016.12.010. [CrossRef] [Google Scholar]
- Circone S., Stern L.A., Kirby S.H., Durham W.B., Chakoumakos B.C., Rawn C.J., Rondinone A.J., Ishii Y. (2003) CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate, J. Phys. Chem. B 107, 23, 5529–5539. https://doi.org/10.1021/jp027391j. [CrossRef] [Google Scholar]
- Hester K.C., Huo Z., Ballard A.L., Koh C.A., Miller K.T., Sloan E.D. (2007) Thermal expansivity for sI and sII clathrate hydrates, J. Phys. Chem. B 111, 30, 8830–8835. https://doi.org.10.1021/jp0715880. [CrossRef] [PubMed] [Google Scholar]
- Ikeda T., Mae S., Yamamuro O., Matsuo T., Ikeda S., Ibberson R.M. (2000) Distortion of host lattice in clathrate hydrate as a function of guest molecule and temperature, J. Phys. Chem. A 104, 46, 10623–10630. https://doi.org/10.1021/jp001313j. [CrossRef] [Google Scholar]
- Yang S., Ping Y., Habchi C. (2019) Real-fluid injection modeling and LES simulation of the ECN spray a injector using a fully compressible two-phase flow approach, Int. J. Multiphase Flow 122. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103145. [Google Scholar]
- Gaballa H., Jafari S., Habchi C., de Hemptinne J.-C. (2022) Numerical investigation of droplet evaporation in high-pressure dual-fuel conditions using a tabulated real-fluid model, Int. J. Heat Mass Transfer 189. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122671. [CrossRef] [Google Scholar]
- Qu J., Faney T., de Hemptinne J.-C., Yousef S., Gallinari P. (2023) PTFlash: a vectorized and parallel deep learning framework for two-phase flash calculation, Fuel 331, 125603. https://doi.org/10.1016/j.fuel.2022.125603. [CrossRef] [Google Scholar]
- Itani L.M., Bruneaux G., Di Lella A., Schulz C. (2015) Two-tracer LIF imaging of preferential evaporation of multi-component gasoline fuel sprays under engine conditions, Proc. Combust. Inst. 35, 3, 2915–2922. https://doi.org/10.1016/j.proci.2014.06.108. [CrossRef] [Google Scholar]
- Holderbaum T.G. (1991) PSRK: a group contribution equation of state based on UNIFAC, Fluid Phase Equilib. 70, 251–265. [CrossRef] [Google Scholar]
- https://www.axens.net/markets/renewable-fuels-bio-based-chemicals/bio-olefins. [Google Scholar]
- https://www.axens.net/markets/renewable-fuels-bio-based-chemicals/renewable-diesel-and-jet. [Google Scholar]
- Twu C.H., Bluck D., Cunningham J.R., Coon J.E. (1991) A cubic equation of state with a new alpha function and a new mixing rule, Fluid Phase Equilib. 69, 33–50. [CrossRef] [Google Scholar]
- Mackay E.J. (2003) Modeling in-situ scale deposition: the impact of reservoir and well geometries and kinetic reaction rates, SPE Prod. Facil. 18, 1, 45–56. https://doi.org/10.2118/81830-PA. [CrossRef] [Google Scholar]
- Moghadasi J., Jamialahmadi M., Müller-Steinhagen H., Sharif A., Ghalambor A., Izadpanah M.R., Motaie E. (2003) Scale formation in Iranian oil reservoir and production equipment during water injection, OnePetro. [Google Scholar]
- Bin Merdhah A.B., Yassin A.M. (2007) Study of scale formation in oil reservoir during water injection-a review. Available at: https://www.researchgate.net/publication/277791130_Study_of_scale_formation_in_oil_reservoir_during_water_injection-A_review . [Google Scholar]
- Pitzer K.S. (1973) Thermodynamics of electrolytes I: theoretical basis and general equations, J. Phys. Chem. 77, 2, 268–277. [CrossRef] [Google Scholar]
- Pitzer K.S. (1975) Thermodynamics of electrolytes. V. Effects of high order electrostatic terms, J. Sol. Chem. 4, 249–265. [CrossRef] [Google Scholar]
- Pitzer K.S., Peiper J.C., Busey R.H. (1984) Thermodynamic properties of aqueous sodium chloride solutions, J. Phys. Chem. Ref. Data 13, 1, 1–102. [CrossRef] [Google Scholar]
- Haaberg T., Jakobsen J.E., Østvold T. (1990) The effect of Ferrous iron on mineral scaling during oil recovery, Acta Chem. Scand. 44, 907–915. [CrossRef] [Google Scholar]
- Pedersen K.S., Christensen P.L., Shaikh J.A., Christensen P.L. (2006) Phase Behavior of Petroleum Reservoir Fluids, CRC Press. ISBN 9780429120855. [CrossRef] [Google Scholar]
- Anderson G.M., Burnham C.W. (1965) The solubility of quartz in super-critical water, Am. J. Sci. 263, 6, 494. https://doi.org/10.2475/ajs.263.6.494. [CrossRef] [Google Scholar]
- Crerar D.A., Anderson G.M. (1971) Solubility and solvation reactions of quartz in dilute hydrothermal solutions, Chem. Geol. 8, 2, 107–122. https://doi.org/10.1016/0009-2541(71)90052-0. [CrossRef] [Google Scholar]
- Kennedy G.C. (1950) A portion of the system silica-water, Econ. Geol. 45, 7, 629–653. https://doi.org/10.2113/gsecongeo.45.7.629. [CrossRef] [Google Scholar]
- Khitarov N.I. (1956) The 400 °C isotherm for the system H2O–SiO2 at pressures up to 2,000 kg/cm2, Geochem. Int. 1956, 55–61. [Google Scholar]
- Kitahara S. (1960) The solubility of quartz in water at high temperature and high pressures, Rev. Phys. Chem. Japan 30, 109–114. [Google Scholar]
- Manning C.E. (1994) The solubility of quartz in H2O in the lower crust and upper mantle, Geochim. Cosmochim. Acta 58, 22, 4831–4839. https://doi.org/10.1016/0016-7037(94)90214-3. [CrossRef] [Google Scholar]
- Morey George W., Fournier Robert Orville, Rowe J.J. (1964) The solubility of amorphous silica at 25 C, J. Geophys. Res. 69, 1995–2002. [CrossRef] [Google Scholar]
- Morey G., Fournier R., Rowe J. (1962) The solubility of quartz in water in the temperature interval from 25 to 300 C, Geochim. Cosmochim. Acta 26, 10, 1029–1043. https://doi.org/10.1016/0016-7037(62)90027-3. [CrossRef] [Google Scholar]
- Vala Ragnarsdóttir K., Walther J.V. (1983) Pressure sensitive “silica geothermometer” determined from quartz solubility experiments at 250 °C, Geochim. Cosmochim. Acta 47, 5, 941–946. https://doi.org/10.1016/0016-7037(83)90159-X. [CrossRef] [Google Scholar]
- Rimstidt J. (1997) Quartz solubility at low temperatures, Geochim. Cosmochim. Acta 61, 13, 2553–2558. https://doi.org/10.1016/S0016-7037(97)00103-8. [CrossRef] [Google Scholar]
- Sue K., Mizutani T., Usami T., Arai K., Kasai H., Nakanishi H. (2004) Titanyl phthalocyanine solubility in supercritical acetone, J. Supercrit. Fluids 30, 3, 281–285. https://doi.org/10.1016/j.supflu.2003.09.008. [CrossRef] [Google Scholar]
- Wang H.M., Henderson G.S., Brenan J.M. (2004) Measuring quartz solubility by in situ weight-loss determination using a hydrothermal diamond cell, Geochim. Cosmochim. Acta 68, 24, 5197–5204. https://doi.org/10.1016/j.gca.2004.06.006. [CrossRef] [Google Scholar]
- Weill D., Fyfe W. (1964) The solubility of quartz in H2O in the range 1000–4000 bars and 400–550 °C, Geochim. Cosmochim. Acta 28, 8, 1243–1255. https://doi.org/10.1016/0016-7037(64)90126-7. [CrossRef] [Google Scholar]
- Yokoyama C., Iwabuchi A., Takahashi S., Takeuchi K. (1993) Solubility of PbO in supercritical water, Fluid Phase Equilib. 82, 323–331. https://doi.org/10.1016/0378-3812(93)87156-U. [CrossRef] [Google Scholar]
- Ozarslan A. (2012) Large-scale hydrogen energy storage in salt caverns, Int. J. Hydrogen Energy 37, 19, 14265–14277. https://doi.org/10.1016/j.ijhydene.2012.07.111. [CrossRef] [Google Scholar]
- Réveillère A., Londe L. (2017) Compressed air energy storage: a new beginning? geostock, France, in: SMRI Fall Meeting, Münster, Germany. [Google Scholar]
- Roa Pinto J.S., Bachaud P., Fargetton T., Ferrando N., Jeannin L., Louvet F. (2021) Modeling phase equilibrium of hydrogen and natural gas in brines: application to storage in salt caverns, Int. J. Hydrogen Energy 46, 5, 4229–4240. https://doi.org/10.1016/j.ijhydene.2020.10.242. [CrossRef] [Google Scholar]
- Kiemde A.F., Ferrando N., de Hemptinne J.C., Le Gallo Y., Reveillere A., Roa Pinto J.S. (2003) Hydrogen and Air Storage in Salt Caverns: a thermodynamic model for phase equilibrium calculations, Sci. Technol. Energy Transit. Energy 78, 10. [Google Scholar]
- Chabab S., Théveneau P., Coquelet C., Corvisier J., Paricaud P. (2000) Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application, Int. J. Hydrogen Energy 45, 32206–32200. https://doi.org/10.1016/j.ijhydene.2020.08.192. [CrossRef] [Google Scholar]
- Schneider F., Wolf S., Faille I., Pot D. (2000) A 3d basin model for hydrocarbon potential evaluation: application to congo offshore, Oil Gas Sci. Technol. Rev. IFP 55, 1, 3–13. https://doi.org/10.2516/ogst:2000001. [CrossRef] [Google Scholar]
- Willien F., Chetvchenko I., Masson R., Quandalle P., Agelas L., Requena S. (2009) AMG preconditioning for sedimentary basin simulations in Temis calculator, Mar. Pet. Geol. 26, 4, 519–524. https://doi.org/10.1016/j.marpetgeo.2009.01.014. [CrossRef] [Google Scholar]
- Thibaut M., Jardin A., Faille I., Willien F., Guichet X. (2014) Advanced workflows for fluid transfer in faulted basins, Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 69, 4, 573–584. https://doi.org/10.2516/ogst/2014016. [CrossRef] [Google Scholar]
- Ungerer P., Burrus J., Doligez B.P.Y.C., Chenet P.Y., Bessis F. (1990) Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration, AAPG Bull. 74, 3, 309–335. https://doi.org/10.1306/0C9B22DB-1710-11D7-8645000102C1865D [Google Scholar]
- Meiller C., Coatléven J., Maurand N., Guichet X. (2017) Ecoulements triphasiques dans les bassins sédimentaires, Géologues 193, 54–58. [Google Scholar]
- Jayanti P.C., Venkatarathnam G. (2016) Identification of the phase of a substance from the derivatives of pressure, volume and temperature, without prior knowledge of saturation properties: Extension to solid phase, Fluid Phase Equilib. 425, 269–277. https://doi.org/10.1016/j.fluid.2016.06.001. [CrossRef] [Google Scholar]
- Venkatarathnam G., Oellrich L.R. (2011) Identification of the phase of a fluid using partial derivatives of pressure, volume, and temperature without reference to saturation properties: applications in phase equilibria calculations, Fluid Phase Equilib. 301, 2, 225–233. https://doi.org/10.1016/j.fluid.2010.12.001. [CrossRef] [Google Scholar]
- Heidemann R.A., Khalil A.M. (1980) The calculation of critical points, AIChE J. 26, 5, 769–779. https://doi.org/10.1002/aic.690260510. [CrossRef] [MathSciNet] [Google Scholar]
- Michelsen M.L., Mollerup J. (2004) Thermodynamic models: fundamental and computational aspects, Tie-Line Publications. ISBN: 87-989961-1-8 [Google Scholar]
- Delbos F., Gilbert J.C., Sinoquet D. (2003) Application of an SQP augmented Lagrangian method to a large-scale problem in 3D reflection tomography, in: ISMP 2003, 18th International Symposium on Mathematical Programming, Copenhagen, Aug. 18–22, p. 61. [Google Scholar]
- Chapman W.G., Gubbins K.E., Jackson G., Radosz M. (1989) SAFT: equation-of-state solution model for associating fluids, Fluid Phase Equilib. 52, 31–38. https://doi.org/10.1016/0378-3812(89)80308-5. [CrossRef] [Google Scholar]
- Tamouza S., Passarello J.P., Tobaly P., de Hemptinne J.C. (2004) Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series, Fluid Phase Equilib. 222–223, 67–76. [CrossRef] [Google Scholar]
- Tamouza S., Passarello J.P., Tobaly P., de Hemptinne J.C. (2005) Application to binary mixtures of a group contribution SAFT EOS, Fluid Phase Equilib. 228–229, 409–419. [CrossRef] [Google Scholar]
- Nguyen Huynh D., Passarello J.-P., Tobaly P., de Hemptinne J.-C. (2008) Application of GC-SAFT EOS to polar systems using a segment approach, Fluid Phase Equilib. 264, 1, 62–75. https://doi.org/10.1016/j.fluid.2007.10.019. [CrossRef] [Google Scholar]
- Nguyen-Huynh D., Passarello J.P., Tobaly P., de Hemptinne J.C. (2008) Modeling phase equilibria of asymmetric mixtures using a group-contribution SAFT (GC-SAFT) with a kij correlation method based on London’s theory. 1. Application to CO2 + n-alkane, methane + n-alkane, and ethane + n-alkane systems, Ind. Eng. Chem. Res. 47, 22, 8847–8858. [CrossRef] [Google Scholar]
- Nguyen-Huynh D., Tran T.K.S., Tamouza S., Passarello J.P., Tobaly P., de Hemptinne J.C. (2008) Modeling phase equilibria of asymmetric mixtures using a group-contribution SAFT (GC-SAFT) with a kij correlation method based on London’s theory. 2. Application to binary mixtures containing aromatic hydrocarbons, n-Alkanes, CO2, N2, and H2S, Ind. Eng. Chem. Res. 47, 22, 8859–8868. [CrossRef] [Google Scholar]
- Smith V.C., Robinson R.L., Jr. (1970) Vapor–liquid equilibriums at 25.deg. in the binary mixtures formed by hexane, benzene, and ethanol, J. Chem. Eng. Data 15, 3, 391–395. https://doi.org/10.1021/je60046a005. [CrossRef] [Google Scholar]
- Trinh T.-K.-H., Passarello J.-P., de Hemptinne J.-C., Lugo R., Lachet V. (2016) A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation, J. Chem. Phys. 144, 12, 124902. https://doi.org/10.1063/1.4944068. [CrossRef] [PubMed] [Google Scholar]
- Trinh T.-K.-H., Passarello J.-P., de Hemptinne J.-C., Lugo R. (2016) Use of a non additive GC-PPC-SAFT equation of state to model hydrogen solubility in oxygenated organic compounds, Fluid Phase Equilib. 429, 177–195. https://doi.org/10.1016/j.fluid.2016.08.003. [CrossRef] [Google Scholar]
- Creton B., Agoudjil C., de Hemptinne J.-C. (2023) Assessment of two PC-SAFT parameterization strategies for pure compounds: model accuracy and sensitivity analysis, Fluid Phase Equilib. 565, 113666. https://doi.org/10.1016/j.fluid.2022.113666. [CrossRef] [Google Scholar]
- Yang F., Ngo T.D., Kontogeorgis G.M., de Hemptinne J.-C. (2022) A benchmark database for mixed-solvent electrolyte solutions: consistency analysis using E-NRTL, Ind. Eng. Chem. Res. 61, 42, 15576–15593. https://doi.org/10.1021/acs.iecr.2c00059. [CrossRef] [Google Scholar]
- Inchekel R., de Hemptinne J.C., Fürst W. (2008) The simultaneous representation of dielectric constant, volume and activity coefficients using an electrolyte equation of state, Fluid Phase Equilib. 271, 1–2, 19–27. [CrossRef] [Google Scholar]
- Courtial X., Ferrando N., de Hemptinne J.-C., Mougin P. (2014) Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications, Geochim. Cosmochim. Acta 142, 1–14. https://doi.org/10.1016/j.gca.2014.07.028. [CrossRef] [Google Scholar]
- Rozmus J., de Hemptinne J.C., Galindo A., Dufal S., Mougin P. (2013) Modeling of strong electrolytes with ePPC-SAFT up to high temperatures, Ind. Eng. Chem. Res. 52, 9979–9994. https://doi.org/10.1021/ie303527j. [CrossRef] [Google Scholar]
- Roa Pinto J.S., Ferrando N., de Hemptinne J.-C., Galindo A. (2022) Temperature dependence and short-range electrolytic interactions within the e-PPC-SAFT framework, Fluid Phase Equilib. 560, 113486. https://doi.org/10.1016/j.fluid.2022.113486. [CrossRef] [Google Scholar]
- TemisFlow. https://www.beicip.com/petroleum-system-assessment. [Google Scholar]
- Converge. https://convergecfd.com/. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.