Open Access
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 31
Number of page(s) 15
Published online 31 October 2023
  • Fleten S.-E., Kristoffersen T.K. (2008) Short-term hydropower production planning by stochastic programming, Comput. Oper. Res. 35, 8, 2656–2671. [CrossRef] [Google Scholar]
  • Labadie J.W. (2004) Optimal operation of multireservoir systems: state-of-the-art review, J. Water Resour. Plan. Manag. 130, 2, 93–111. [CrossRef] [Google Scholar]
  • Tahanan M., van Ackooij W., Frangioni A., Lacalandra F. (2015) Large-scale unit commitment under uncertainty, 4OR 13, 2, 115–171. [CrossRef] [MathSciNet] [Google Scholar]
  • van Ackooij W., Danti Lopez I., Frangioni A., Lacalandra F., Tahanan M. (2018) Large-scale unit commitment under uncertainty: an updated literature survey, Ann. Oper. Res. 271, 1, 11–85. [CrossRef] [MathSciNet] [Google Scholar]
  • Rahmaniani R., Crainic T.G., Gendreau M., Walter W. (2017) The benders decomposition algorithm: a literature review, Eur. J. Oper. Res. 259, 3, 801–817. [CrossRef] [MathSciNet] [Google Scholar]
  • Sen S. (2005) Algorithms for stochastic mixed-integer programming models, in: Handbooks in Operations Research and Management Science, vol. 12, Elsevier, pp. 515–558. [CrossRef] [Google Scholar]
  • Shapiro A. (2011) Analysis of stochastic dual dynamic programming method, Eur. J. Oper. Res. 209, 1, 63–72. [CrossRef] [Google Scholar]
  • van Ackooij W., Malick J. (2016) Decomposition algorithm for large-scale two-stage unitcommitment, Ann. Oper. Res. 238, 1, 587–613. [CrossRef] [MathSciNet] [Google Scholar]
  • Carpentier P.-L., Gendreau M., Bastin F. (2013) Long-term management of a hydro electric multireservoir system under uncertainty using the progressive hedging algorithm, Water Resour. Res. 49, 5, 2812–2827. [CrossRef] [Google Scholar]
  • Carpentier P., Chancelier J.-P., Leclère V., Pacaud F. (2018) Stochastic decomposition applied to large-scale hydro valleys management, Eur. J. Oper. Res. 270, 3, 1086–1098. [CrossRef] [MathSciNet] [Google Scholar]
  • van Ackooij W., d’Ambrosio C., Thomopulos D., Trindade R.S. (2021) Decomposition and shortest path problem formulation for solving the hydro unit commitment and scheduling in a hydro valley, Eur. J. Oper. Res. 291, 3, 935–943. [CrossRef] [MathSciNet] [Google Scholar]
  • Ahmed S., Tawarmalani M., Sahinidis N.V. (2004) A finite branch-and-bound algorithm for two-stage stochastic integer programs, Math. Program. 100, 2, 355–377. [CrossRef] [MathSciNet] [Google Scholar]
  • Carøe C.C., Tind J. (1998) L-shaped decomposition of two-stage stochastic programs with integer recourse, Math. Program. 83, 451–464. [CrossRef] [MathSciNet] [Google Scholar]
  • Gade D., Küçükyavuz S., Sen S. (2014) Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs, Math. Program. 144, 1–2, 39–64. [CrossRef] [MathSciNet] [Google Scholar]
  • Laporte G., Louveaux F.V. (1993) The integer L-shaped method for stochastic integer programs with complete recourse, Oper. Res. Lett. 13, 3, 133–142. [CrossRef] [MathSciNet] [Google Scholar]
  • Zou J., Ahmed S., Sun X.A. (2019) Stochastic dual dynamic integer programming, Math. Program. 175, 461–502. [CrossRef] [MathSciNet] [Google Scholar]
  • El Amri R., Helbert C., Zuniga M.M., Prieur C., Sinoquet D. (2020) Set inversion under functional uncertainties with joint meta-models (working paper or preprint). [Google Scholar]
  • Antoniadis A., Helbert C., Prieur C., Viry L. (2012) Spatio-temporal meta modeling for west African monsoon, Environmetrics 23, 1, 24–36. [CrossRef] [MathSciNet] [Google Scholar]
  • Nanty S., Helbert C., Marrel A., Pérot N., Prieur C. (2016) Sampling, metamodelling and sensitivity analysis of numerical simulators with functional stochastic inputs, SIAM/ASA J. Uncertain. Quantif. 4, 1, 636–659. [CrossRef] [MathSciNet] [Google Scholar]
  • Nanty S., Helbert C., Marrel A., Pérot N., Prieur C. (2017) Uncertainty quantification for functional dependent random variables, Comput. Stat. 32, 2, 559–583. [CrossRef] [MathSciNet] [Google Scholar]
  • Piron V., Bontron G., Pochat M. (2015) Operating a hydropower cascade to optimize energy management, Int. J. Hydropower Dams 22, 5. [Google Scholar]
  • Bellier J., Zin I., Bontron G. (2018) Generating coherent ensemble forecasts after hydrological postprocessing: adaptations of ECC-based methods, Water Resour. Res. 54, 8, 5741–5762. [CrossRef] [Google Scholar]
  • Celie S., Bontron G., Ouf D., Pont E. (2019) Apport de l’expertise dans la prévision hydro-météorologique opérationnelle, La Houille Blanche 2, 55–62. [CrossRef] [EDP Sciences] [Google Scholar]
  • Blair C.E., Jeroslow R.G. (1977) The value function of a mixed integer program: I, Discrete Math. 19, 2, 121–138. [CrossRef] [MathSciNet] [Google Scholar]
  • Haneveld K., Van der Vlerk M.H. (2020) Stochastic programming, Springer. [Google Scholar]
  • Ralphs T.K., Hassanzadeh A. (2014) On the value function of a mixed integer linear optimization problem and an algorithm for its construction. COR@ L Technical Report 14T-004. [Google Scholar]
  • Bellier J., Zin I., Siblot S., Bontron G. (2016) Probabilistic flood forecasting on the Rhone River: evaluation with ensemble and analogue-based precipitation forecasts, in: E3S Web of Conferences, vol. 7, EDP Sciences, p. 18011. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lorenz E.N. (1969) Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci. 26, 4, 636–646. [CrossRef] [Google Scholar]
  • Gneiting T., Raftery A.E. (2007) Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc. 102, 477, 359–378. [CrossRef] [Google Scholar]
  • Hersbach H. (2000) Decomposition of the continuous ranked probability score for ensemble prediction systems, Weather Forecast. 15, 5, 559–570. [CrossRef] [Google Scholar]
  • Matheson J.E., Winkler R.L. (1976) Scoring rules for continuous probability distributions, Manag. Sci. 22, 10, 1087–1096. [CrossRef] [Google Scholar]
  • Santner T.J., Williams B.J., Notz W.I., Williams B.J. (2003) The design and analysis of computer experiments, vol. 1, Springer. [CrossRef] [Google Scholar]
  • De Boor C. (1978) A practical guide to splines, vol. 27, Springer-verlag, New York, p. 545. [Google Scholar]
  • Jolliffe I. (2005) Principal component analysis, in: Encyclopedia of Statistics in Behavioral Science, Wiley. [Google Scholar]
  • Ramsay J.O., Silverman B.W. (2002) Applied functional data analysis: methods and case studies, vol. 77, Springer. [CrossRef] [Google Scholar]
  • Torrence C., Compo G.P. (1998) A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79, 1, 61–78. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.