Issue
Sci. Tech. Energ. Transition
Volume 78, 2023
Selected Papers from First European Conference on Gas Hydrates (ECGH), 2022
Article Number 29
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2023027
Published online 19 October 2023
  • Cowan D., Gartshore J., Chaer I., Francis C., Maidment G. (2010) REAL zero – reducing refrigerant emissions and leakage – feedback from the IOR project, in: Proc. Inst. R. 2009-10, 7, IOR The Institute Of Refrigeration, 16 p. [Google Scholar]
  • Fournaison L., Delahaye A., Chatti I., Petitet J.P. (2004) CO2 hydrates in refrigeration processes, Ind. Eng. Chem. Res. 43, 20, 6521–6526. [CrossRef] [Google Scholar]
  • Mota-Babiloni A., Navarro-Esbri J., Barragan-Cervera A., Moles F., Peris B., Verdu G. (2015) Commercial refrigeration – an overview of current status, Int. J. Refrig.-Rev. Int. Froid. 57, 186–196. [CrossRef] [Google Scholar]
  • Wang K., Eisele M., Hwang Y., Radermacher R. (2010) Review of secondary loop refrigeration systems, Int. J. Refrig.-Rev. Int. Froid. 33, 2, 212–234. [CrossRef] [Google Scholar]
  • Compingt A., Blanc P., Quidort A. (2009) Slurry for refrigeration industrial kitchen application, in 8th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning, M. Kauffeld (ed), Int. Inst. Refrigeration IIR-IIF, Karlsruhe, Germany, pp. 135–144. [Google Scholar]
  • Gschwander S., Schossig P. (2009) Phase change slurries as heat transfer and storage fluids for cooling applications, in 8th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning, M. Kauffeld (ed), Int. Inst. Refrigeration IIR-IIF, Karlsruhe, Germany, pp. 82–89. [Google Scholar]
  • Sloan E.D., Koh C.A. (2008) Clathrate hydrates of natural gases, Third Edition Preface, CRC Press-Taylor & Francis Group, Boca Raton, FL. [Google Scholar]
  • Ilani-Kashkouli P., Mohammadi A.H., Naidoo P., Ramjugernath D. (2016) Hydrate phase equilibria for CO2, CH4, or N2 + tetrabutylphosphonium bromide (TBPB) aqueous solution, Fluid Phase Equilib. 411, 88–92. [CrossRef] [Google Scholar]
  • Lin W., Dalmazzone D., Fuerst W., Delahaye A., Fournaison L., Clain P. (2014) Thermodynamic properties of semiclathrate hydrates formed from the TBAB plus TBPB plus water and CO2 + TBAB + TBPB plus water systems, Fluid Phase Equilib. 372, 63–68. [CrossRef] [Google Scholar]
  • Mayoufi N., Dalmazzone D., Delahaye A., Clain P., Fournaison L., Fuerst W. (2011) Experimental data on phase behavior of simple Tetrabutylphosphonium Bromide (TBPB) and mixed CO2 + TBPB semiclathrate hydrates, J. Chem. Eng. Data 56, 6, 2987–2993. [CrossRef] [Google Scholar]
  • Shi L.-L., Liang D.-Q., Li D.-L. (2013) Phase equilibrium data of tetrabutylphosphonium bromide plus carbon dioxide or nitrogen semiclathrate hydrates, J. Chem. Eng. Data 58, 7, 2125–2130. [CrossRef] [Google Scholar]
  • Zhang P., Ye N., Zhu H., Xiao X. (2013) Hydrate equilibrium conditions of tetra-n-butylphosphonium bromide + carbon dioxide and the crystal morphologies, J. Chem. Eng. Data 58, 6, 1781–1786. [CrossRef] [Google Scholar]
  • Chami N., Bendjenni S., Clain P., Osswald V., Delahaye A., Fournaison L., Dalmazzone D. (2021) Thermodynamic characterization of mixed gas hydrates in the presence of cyclopentane as guest molecule for an application in secondary refrigeration, Chem. Eng. Sci. 244, 10. [Google Scholar]
  • Lv Y., Xia X.R., Wang F., Wu X.D., Cheng C.X., Zhang L.X., Yang L., Zhao J.F., Song Y.C. (2022) Clathrate hydrate for phase change cold storage: Simulation advances and potential applications, J. Energy Storage 55, 20. [Google Scholar]
  • Pahlavanzadeh H., Eslamimanesh A., Ghavi A. (2022) Gas hydrate phase equilibrium data for the CO2 + TBPB + THF plus water system, J. Chem. Eng. Data 67, 9, 2792–2799. [CrossRef] [Google Scholar]
  • Bi Y.H., Guo T.W., Zhang L., Zhang H., Chen L.G. (2009) Experimental study on cool release process of gas-hydrate with additives, Energy Build. 41, 1, 120–124. [CrossRef] [Google Scholar]
  • Shi L., Yi L., Shen X., Wu W., Liang D. (2017) The effect of tetrabutylphosphonium bromide on the formation process of CO2 hydrates, J. Mol. Liq. 229, 98–105. [CrossRef] [Google Scholar]
  • La Sala J. (2009) Froid indirect pratique – fluides frigoporteurs liquides, Tethila Ed. [Google Scholar]
  • Dufour T., Oignet J., Ben Abdallah R., Hoang H.M., Leducq D., Delahaye A., Fournaison L., Pons M. (2016) Dynamic modelling of secondary refrigeration loop with CO2 hydrate slurry, in 11th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning, M. Kauffeld (ed), International Institute of Refrigeration, Paris, pp. 181–188. [Google Scholar]
  • Youssef Z., Fournaison L., Delahaye A., Pons M. (2019) Management of vapor release in secondary refrigeration processes based on hydrates involving CO2 as guest molecule, Int. J. Refrig.-Rev. Int. Froid. 98, 202–210. [CrossRef] [Google Scholar]
  • Lv X.F., Yu D., Li W.Q., Shi B.H., Gong J., Asme (2013) Experimental study on blockage of gas hydrate slurry in a flow loop, In Proceedings of the 9th International Pipeline Conference – 2012, Vol. 4, American Society of Mechanical Engineers, Calgary, Alberta, Canada, pp. 37–43. [Google Scholar]
  • Balakin B.V., Hoffmann A.C., Kosinski P. (2011) Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow, Chem. Eng. Sci. 66, 4, 755–765. [Google Scholar]
  • Dufour T., Hoang H.M., Oignet J., Osswald V., Clain P., Fournaison L., Delahaye A. (2017) Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage, Appl. Energy 204, 641–652. [CrossRef] [Google Scholar]
  • Diamond L.W., Akinfiev N.N. (2003) Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling, Fluid Phase Equilib. 208, 1–2, 265–290. [CrossRef] [Google Scholar]
  • Lv X.F., Shi B.H., Wang Y., Gong J. (2013) Study on gas hydrate formation and hydrate slurry flow in a multiphase transportation system, Energy Fuels 27, 12, 7294–7302. [CrossRef] [Google Scholar]
  • Pons M., Hoang H.-M., Dufour T., Delahaye A., Fournaison L. (2018) Energy analysis of two-phase secondary refrigeration in steady-state operation, Part 1: global optimization and leading parameter, Energy 161, 1282–1290. [CrossRef] [Google Scholar]
  • IIF-IIR (2003) R744 CO2 dioxyde de carbone : Propriétés thermophysiques, IIF-IIR, Paris. [Google Scholar]
  • Alexander D.M., Hill D.J.T., White L.R. (1971) Evaluation of thermodynamic functions from aqueous solubility measurements, Aust. J. Chem. 24, 6, 1143. [CrossRef] [Google Scholar]
  • Koschel D., Coxam J.Y., Rodier L., Majer V. (2006) Enthalpy and solubility data of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration, Fluid Phase Equilib. 247, 1–2, 107–120. [CrossRef] [Google Scholar]
  • Barbero J.A., Hepler L.G., McCurdy K.G., Tremaine P.R. (1983) Thermodynamics of aqueous carbon-dioxide and sulfur-dioxide – heat-capacities, volumes, and the temperature-dependence of ionization, Can. J. Chem. 61, 11, 2509–2519. [CrossRef] [Google Scholar]
  • Hnedkovsky L., Wood R.H. (1997) Apparent molar heat capacities of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 304 K to 704 K at a pressure of 28 MPa, J. Chem. Thermodyn. 29, 7, 731–747. [CrossRef] [Google Scholar]
  • Span R., Wagner W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25, 6, 1509–1596. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.