Numéro
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Numéro d'article 90
Nombre de pages 11
DOI https://doi.org/10.2516/stet/2024087
Publié en ligne 30 octobre 2024
  • Berenjestanaki A. V., Husain D. (2001) Effect of nitromethane and jatropha biodiesel on the combustion, performance and emission characteristics of diesel engine, Int. J. Automot. Mech. 18, 3, 8986–8997. [Google Scholar]
  • Hussain S. S., Ali S. A., Bagwan A. H., Husain D., Ahmad A., (2023) Prediction of CI engine emissions fueled with multiwalled carbon nanotube-doped waste cooking oil biodiesel using multilayer neural network, J. Nanomater. 2023, 1, 2508422. [CrossRef] [Google Scholar]
  • Afzal A., Agbulut U., Soudagar M.E.M., Razak R. K., Buradi A., Saleel C. A. (2021) Blends of scum oil methyl ester, alcohols, silver nanoparticles and the operating conditions affecting the diesel engine performance and emission: an optimization study using Dragon fly algorithm, Appl. Nanosci. 11, 9, 2415–2432. [CrossRef] [Google Scholar]
  • Hosamani B. R., Ali S. A., Katti V. (2021) Assessment of performance and exhaust emission quality of different compression ratio engine using two biodiesel mixture: artificial neural network approach, Alex. Eng. J. 60, 1, 837–844. [CrossRef] [Google Scholar]
  • Ranjan A., Dawna S. S., Jayaprabakar J., Nirmala N., Saikiran K., Sai Sriram S. (2018) Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel, Fuel 220, 780–791. [CrossRef] [Google Scholar]
  • Rajak U., Ağbulut Ü., Veza I., Dasore A., Sarıdemir S., Verma T. N. (2022) Numerical and experimental investigation of a CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel, Energy 239, 122424. [CrossRef] [Google Scholar]
  • Kulkarni M. G., Dalai A. K. (2006) WCOs an economical source for biodiesel: a review, Ind. Eng. Chem. Res. 45, 2901–2913. [CrossRef] [Google Scholar]
  • Ali S. A., Hunagund S., Hussain S. S., Bagwan A. H. (2020) The effect of nanoparticles dispersed in waste cooking oil (WCO) biodiesel on thermal performance characteristics of VCR engine, Mater. Today: Proc. 43, 2, 888–891. [Google Scholar]
  • Kareemullah M., Afzal A., Fazlur Rehman K., Shahapurkar K., Khan H., Akra N. (2020) Performance and emission analysis of compression ignition engine using biodiesels from Acid oil, Mahua oil, and Castor oil, Heat. Transf. Res. 49, 858–871. [CrossRef] [Google Scholar]
  • Kumar S. S., Rajan K., Mohanvel V., Ravichandran M., Rajendran P., Rashedi A., Sharma A., Khan S. A., Afzal A. (2021) Combustion, performance, and emission behaviors of biodiesel fueled diesel engine with the impact of alumina nanoparticle as an additive, Sustainability. 13, 21, 12103. [CrossRef] [Google Scholar]
  • Ağbulut U., Karagöz M., Sarıdemir M., Öztürk A. (2020) Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine, Fuel. 270, 117521. [CrossRef] [Google Scholar]
  • Lv J., Wang S., Meng B. (2022) The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review, Energies. 15, 1032. [CrossRef] [Google Scholar]
  • Kumar R., Singh B., Arunkumar M., Shan D. P., Patil P. P., Chowdary V.L. (2022) Performance and Emission analysis of waste cooking oil biodiesel mixed with titanium oxide nano-additives, Int. J. Chem. Eng. 2022, 1101771. [Google Scholar]
  • Prabhu A. (2017) Nanoparticles as additive in biodiesel on the working charecteristics of a DI diesel engine, Ain. Shams. Eng. J. 9, 4, 2343–2349. [Google Scholar]
  • Gad M. S., Abdel A. M. M., Kayed H. (2022) Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel, Propuls. Power. Res. 11, 2, 209–223. [CrossRef] [Google Scholar]
  • Abed K. A., El Morsi A. I., Sayed M. M., El Shaib A. A., Gad M. S. (2018) Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine, Egypt. J. Pet. 27, 4, 985–989. [CrossRef] [Google Scholar]
  • Padmanabhan S., Selvamuthukumar M., Mahalingam S., Giridharan K., Ganesan S. (2023) Influential study of oxygenated additives in waste cooking biodiesel blends on diesel engine performance, Multidiscip. Sci. J. 5, 2, 2023015. [CrossRef] [Google Scholar]
  • Tamrat S., Ancha V. R., Gopal R., Nallamothu R. B., Seifu Y. (2024) Emission and performance analysis of diesel engine running with CeO2 nanoparticle additive blended into castor oil biodiesel as a substitute fuel, Sci. Rep. 14, 1, 7634. [CrossRef] [Google Scholar]
  • Çalık A., Tosun E., Akar M. A., Özcanlı M. (2023) Combined effects of hydrogen and TiO2 nanoparticle additive on terebinth oil biodiesel operated diesel engine, Sci. Tech. Energ. Transition 78, 9. https://doi.org/10.2516/stet/2023007. [CrossRef] [Google Scholar]
  • Rajeswari K. T., Selvadas S. S. R. (2023) Performance and emission characteristics of salviniaceae filiculoides aquatic fern oil and SiO2 nano additive biodiesel in CI engine, Sci. Tech. Energ. Transition 78, 4. https://doi.org/10.2516/stet/2022021. [CrossRef] [Google Scholar]
  • Thanikodi S., Rangappa S. M., Sebayang A. H., Siengchin S. (2023) Performance of IC engines using chicken waste as biofuel, CNT and MnO nano-biofuels and diesel fuel: a comparation study, Automot. Exp. 6, 2, 395–406. https://doi.org/10.31603/ae.9556. [CrossRef] [Google Scholar]
  • Yilbaşi Z., Yesilyurt M. K., Yaman H., Arslan M. (2022) The industrial-grade hemp (Cannabis sativa L.) seed oil biodiesel application in a diesel engine: combustion, harmful pollutants, and performance characteristics, Sci. Tech. Energ. Transition 77, 15. https://doi.org/10.2516/stet/2022011. [CrossRef] [Google Scholar]
  • Yaman H., Saltan G., Doǧan B., Yeşilyurt M. K., Sarıkoç S. (2023) Examination of a CI engine running on poppy seed oil biodiesel/n-pentanol/diesel fuel blends with respect of thermodynamic and economic perspectives, Sci. Tech. Energ. Transition 78, 40. https://doi.org/10.2516/stet/2023040. [CrossRef] [Google Scholar]
  • Soudagar M. E. M., Shelare S., Marghade D., Belkhode P., Nur-E-Alam M., Kiong T. S., Ramesh S., Rajabi A., Venu H., Khan T. Y., Mujtaba M., Shahapurkar K., Kalam M., Fattah I. (2024) Optimizing IC engine efficiency: a comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning, Energy Convers. Manag. 307, 118337. https://doi.org/10.1016/j.enconman.2024.118337. [CrossRef] [Google Scholar]
  • Awogbemi O., Onuh E. I., Inambao F. L. (2019) Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils, Int. J. Low. Carbon. Technol. 14, 3, 417–425. [CrossRef] [Google Scholar]
  • Zhang D., Cao C. Y., Lu S., Cheng Y., Zhang H. P. (2019) Experimental insight into catalytic mechanism of transition metal oxide nanoparticles on combustion of 5-Amino-1H-Tetrazole energetic propellant by multi kinetics methods and TG-FTIR-MS analysis, Fuel 245, 78–88. https://doi.org/10.1016/j.fuel.2019.02.007. [CrossRef] [Google Scholar]
  • Manigandan S., Sarweswaran R., Devi P. B., Sohret Y., Kondratiev A., Venkatesh S., Vimal M. R., Joshua J. J. (2020) Comparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blends, Fuel 262, 116336. https://doi.org/10.1016/j.fuel.2019.116336. [CrossRef] [Google Scholar]
  • Mei D., Li X., Wu Q., Sun P. (2016) Role of cerium oxide nanoparticles as diesel additives in combustion efficiency improvements and emission reduction, J. Energy Eng. 142, 4, 04015050. https://doi.org/10.1061/(asce)ey.1943-7897.0000329. [CrossRef] [Google Scholar]
  • Kumar Y., Yogeshwar P., Bajpai S., Jaiswal P., Yadav S., Pathak D. P., Sonker M., Tiwary S. K. (2021) Nanomaterials: stimulants for biofuels and renewables, yield and energy optimization, Mater. Adv. 2, 16, 5318–5343. https://doi.org/10.1039/d1ma00538c. [CrossRef] [Google Scholar]
  • El-Seesy A. I., Attia A. M., El-Batsh H. M. (2018) The effect of Aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics, Fuel 224, 147–166. https://doi.org/10.1016/j.fuel.2018.03.076. [CrossRef] [Google Scholar]
  • Yusof S. N. A., Sidik N. A. C., Asako Y., Japar W. M. A. A., Mohamed S. B., Muhammad N. M. A. (2020) A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE), Nanotechnol. Rev. 9, 1, 1326–1349. [CrossRef] [Google Scholar]
  • Ruan B., Jacobi A. M. (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Res. Lett. 7, 1, 127. https://doi.org/10.1186/1556-276x-7-127. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.