Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Article Number 90
Number of page(s) 11
DOI https://doi.org/10.2516/stet/2024087
Published online 30 October 2024
  • Berenjestanaki A. V., Husain D. (2001) Effect of nitromethane and jatropha biodiesel on the combustion, performance and emission characteristics of diesel engine, Int. J. Automot. Mech. 18, 3, 8986–8997. [Google Scholar]
  • Hussain S. S., Ali S. A., Bagwan A. H., Husain D., Ahmad A., (2023) Prediction of CI engine emissions fueled with multiwalled carbon nanotube-doped waste cooking oil biodiesel using multilayer neural network, J. Nanomater. 2023, 1, 2508422. [CrossRef] [Google Scholar]
  • Afzal A., Agbulut U., Soudagar M.E.M., Razak R. K., Buradi A., Saleel C. A. (2021) Blends of scum oil methyl ester, alcohols, silver nanoparticles and the operating conditions affecting the diesel engine performance and emission: an optimization study using Dragon fly algorithm, Appl. Nanosci. 11, 9, 2415–2432. [CrossRef] [Google Scholar]
  • Hosamani B. R., Ali S. A., Katti V. (2021) Assessment of performance and exhaust emission quality of different compression ratio engine using two biodiesel mixture: artificial neural network approach, Alex. Eng. J. 60, 1, 837–844. [CrossRef] [Google Scholar]
  • Ranjan A., Dawna S. S., Jayaprabakar J., Nirmala N., Saikiran K., Sai Sriram S. (2018) Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel, Fuel 220, 780–791. [CrossRef] [Google Scholar]
  • Rajak U., Ağbulut Ü., Veza I., Dasore A., Sarıdemir S., Verma T. N. (2022) Numerical and experimental investigation of a CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel, Energy 239, 122424. [CrossRef] [Google Scholar]
  • Kulkarni M. G., Dalai A. K. (2006) WCOs an economical source for biodiesel: a review, Ind. Eng. Chem. Res. 45, 2901–2913. [CrossRef] [Google Scholar]
  • Ali S. A., Hunagund S., Hussain S. S., Bagwan A. H. (2020) The effect of nanoparticles dispersed in waste cooking oil (WCO) biodiesel on thermal performance characteristics of VCR engine, Mater. Today: Proc. 43, 2, 888–891. [Google Scholar]
  • Kareemullah M., Afzal A., Fazlur Rehman K., Shahapurkar K., Khan H., Akra N. (2020) Performance and emission analysis of compression ignition engine using biodiesels from Acid oil, Mahua oil, and Castor oil, Heat. Transf. Res. 49, 858–871. [CrossRef] [Google Scholar]
  • Kumar S. S., Rajan K., Mohanvel V., Ravichandran M., Rajendran P., Rashedi A., Sharma A., Khan S. A., Afzal A. (2021) Combustion, performance, and emission behaviors of biodiesel fueled diesel engine with the impact of alumina nanoparticle as an additive, Sustainability. 13, 21, 12103. [CrossRef] [Google Scholar]
  • Ağbulut U., Karagöz M., Sarıdemir M., Öztürk A. (2020) Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine, Fuel. 270, 117521. [CrossRef] [Google Scholar]
  • Lv J., Wang S., Meng B. (2022) The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review, Energies. 15, 1032. [CrossRef] [Google Scholar]
  • Kumar R., Singh B., Arunkumar M., Shan D. P., Patil P. P., Chowdary V.L. (2022) Performance and Emission analysis of waste cooking oil biodiesel mixed with titanium oxide nano-additives, Int. J. Chem. Eng. 2022, 1101771. [Google Scholar]
  • Prabhu A. (2017) Nanoparticles as additive in biodiesel on the working charecteristics of a DI diesel engine, Ain. Shams. Eng. J. 9, 4, 2343–2349. [Google Scholar]
  • Gad M. S., Abdel A. M. M., Kayed H. (2022) Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel, Propuls. Power. Res. 11, 2, 209–223. [CrossRef] [Google Scholar]
  • Abed K. A., El Morsi A. I., Sayed M. M., El Shaib A. A., Gad M. S. (2018) Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine, Egypt. J. Pet. 27, 4, 985–989. [CrossRef] [Google Scholar]
  • Padmanabhan S., Selvamuthukumar M., Mahalingam S., Giridharan K., Ganesan S. (2023) Influential study of oxygenated additives in waste cooking biodiesel blends on diesel engine performance, Multidiscip. Sci. J. 5, 2, 2023015. [CrossRef] [Google Scholar]
  • Tamrat S., Ancha V. R., Gopal R., Nallamothu R. B., Seifu Y. (2024) Emission and performance analysis of diesel engine running with CeO2 nanoparticle additive blended into castor oil biodiesel as a substitute fuel, Sci. Rep. 14, 1, 7634. [CrossRef] [Google Scholar]
  • Çalık A., Tosun E., Akar M. A., Özcanlı M. (2023) Combined effects of hydrogen and TiO2 nanoparticle additive on terebinth oil biodiesel operated diesel engine, Sci. Tech. Energ. Transition 78, 9. https://doi.org/10.2516/stet/2023007. [CrossRef] [Google Scholar]
  • Rajeswari K. T., Selvadas S. S. R. (2023) Performance and emission characteristics of salviniaceae filiculoides aquatic fern oil and SiO2 nano additive biodiesel in CI engine, Sci. Tech. Energ. Transition 78, 4. https://doi.org/10.2516/stet/2022021. [CrossRef] [Google Scholar]
  • Thanikodi S., Rangappa S. M., Sebayang A. H., Siengchin S. (2023) Performance of IC engines using chicken waste as biofuel, CNT and MnO nano-biofuels and diesel fuel: a comparation study, Automot. Exp. 6, 2, 395–406. https://doi.org/10.31603/ae.9556. [CrossRef] [Google Scholar]
  • Yilbaşi Z., Yesilyurt M. K., Yaman H., Arslan M. (2022) The industrial-grade hemp (Cannabis sativa L.) seed oil biodiesel application in a diesel engine: combustion, harmful pollutants, and performance characteristics, Sci. Tech. Energ. Transition 77, 15. https://doi.org/10.2516/stet/2022011. [CrossRef] [Google Scholar]
  • Yaman H., Saltan G., Doǧan B., Yeşilyurt M. K., Sarıkoç S. (2023) Examination of a CI engine running on poppy seed oil biodiesel/n-pentanol/diesel fuel blends with respect of thermodynamic and economic perspectives, Sci. Tech. Energ. Transition 78, 40. https://doi.org/10.2516/stet/2023040. [CrossRef] [Google Scholar]
  • Soudagar M. E. M., Shelare S., Marghade D., Belkhode P., Nur-E-Alam M., Kiong T. S., Ramesh S., Rajabi A., Venu H., Khan T. Y., Mujtaba M., Shahapurkar K., Kalam M., Fattah I. (2024) Optimizing IC engine efficiency: a comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning, Energy Convers. Manag. 307, 118337. https://doi.org/10.1016/j.enconman.2024.118337. [CrossRef] [Google Scholar]
  • Awogbemi O., Onuh E. I., Inambao F. L. (2019) Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils, Int. J. Low. Carbon. Technol. 14, 3, 417–425. [CrossRef] [Google Scholar]
  • Zhang D., Cao C. Y., Lu S., Cheng Y., Zhang H. P. (2019) Experimental insight into catalytic mechanism of transition metal oxide nanoparticles on combustion of 5-Amino-1H-Tetrazole energetic propellant by multi kinetics methods and TG-FTIR-MS analysis, Fuel 245, 78–88. https://doi.org/10.1016/j.fuel.2019.02.007. [CrossRef] [Google Scholar]
  • Manigandan S., Sarweswaran R., Devi P. B., Sohret Y., Kondratiev A., Venkatesh S., Vimal M. R., Joshua J. J. (2020) Comparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blends, Fuel 262, 116336. https://doi.org/10.1016/j.fuel.2019.116336. [CrossRef] [Google Scholar]
  • Mei D., Li X., Wu Q., Sun P. (2016) Role of cerium oxide nanoparticles as diesel additives in combustion efficiency improvements and emission reduction, J. Energy Eng. 142, 4, 04015050. https://doi.org/10.1061/(asce)ey.1943-7897.0000329. [CrossRef] [Google Scholar]
  • Kumar Y., Yogeshwar P., Bajpai S., Jaiswal P., Yadav S., Pathak D. P., Sonker M., Tiwary S. K. (2021) Nanomaterials: stimulants for biofuels and renewables, yield and energy optimization, Mater. Adv. 2, 16, 5318–5343. https://doi.org/10.1039/d1ma00538c. [CrossRef] [Google Scholar]
  • El-Seesy A. I., Attia A. M., El-Batsh H. M. (2018) The effect of Aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics, Fuel 224, 147–166. https://doi.org/10.1016/j.fuel.2018.03.076. [CrossRef] [Google Scholar]
  • Yusof S. N. A., Sidik N. A. C., Asako Y., Japar W. M. A. A., Mohamed S. B., Muhammad N. M. A. (2020) A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE), Nanotechnol. Rev. 9, 1, 1326–1349. [CrossRef] [Google Scholar]
  • Ruan B., Jacobi A. M. (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Res. Lett. 7, 1, 127. https://doi.org/10.1186/1556-276x-7-127. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.