Numéro
Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Numéro d'article 42
Nombre de pages 40
DOI https://doi.org/10.2516/stet/2023036
Publié en ligne 22 décembre 2023
  • Hirasaki G.J., Miller C.A., Szafranski R., Lawson J.B., Akiya N. (1997) Surfactant/foam process for aquifer remediation (Paper SPE 37 257), in: 1997 SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 18–21 February. [Google Scholar]
  • Mamun C.K., Rong J.G., Kam S.I., Liljestrand H.M., Rossen W.R. (2002) Extending foam technology form improved oil recovery to environmantal remediation (Paper SPE 77557-MS), in: SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October. [Google Scholar]
  • Atteia O., Del Campo Estrada E., Bertin H. (2013) Soil flushing: a review of the origin of efficiency variability, Rev. Environ. Sci. Biotechnol. 12, 379–389. [CrossRef] [Google Scholar]
  • Bertin H., Del Campo Estrada E., Atteia O. (2017) Foam placement for soil remediation, Environ. Chem. 14, 338–343. [CrossRef] [Google Scholar]
  • Karthick A., Roy B., Chattopadhyay P. (2019) A review on the application of chemical surfacant and surfacant foam for remediation of petroleum oil contaminated soil, J. Envoron. Manage. 243, 187–205. [CrossRef] [Google Scholar]
  • Flaifel H., Izadi M., Park S., Gupta I., Lee G., Kam S.I. (2020) Shallow subsurface environmental remediation by using tracer-surfacant-foam processes: history-matching and performance prediction, Trans. Porous Media 134, 565–592. [CrossRef] [Google Scholar]
  • Bouquet S., Douarche F., Roggero F., Leray S. (2020) Characterization of viscous fingering and channeling for the assessment of polymer-based heavy oil displacements, Trans. Porous Media 131, 873–906. [CrossRef] [Google Scholar]
  • Puma is co-marketed by Beicip-Franlab and KAPPA Engineering, Available at https://www.beicip.com/reservoir-simulation and https://www.kappaeng.com/software/rubis-puma/overview. [Google Scholar]
  • Bernard G., Jacobs W.L. (1965) Effect of foam on trapped gas saturation and on permeability of porous media to water, Soc. Pet. Eng. J. 5, 4, 295–300. [CrossRef] [Google Scholar]
  • Lawson J.B., Reisberg J. (1980) Alternate slugs of gas and dilute surfactant for mobility control during chemical flooding (Paper SPE-8839-MS), in: SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April. [Google Scholar]
  • Friedmann F., Chen W.H., Gauglitz P.A. (1991) Experimental and simulation study of high-temperature foam displacement in porous media, SPE Res. Eng. 6, 1, 37–45. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1977) Fundamentals of numerical reservoir simulation, volume 6 of Developments in Petroleum Science, Elsevier Science, Amsterdam. [Google Scholar]
  • Trangenstein J.A., Bell J.B. (1989) Mathematical structure of the black-oil model for petroleum reservoir simulation, SIAM J. Appl. Math. 49, 3, 749–783. [Google Scholar]
  • Marle C.M. (1981) Multiphase flow in porous media, 3rd edn., Gulf Publishing Company. [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2020) Calibrating and scaling semi-empirical foam flow models for the assessment of foam-based EOR processes (in heterogeneous reservoirs), Trans. Porous Media 131, 1, 193–221. [CrossRef] [MathSciNet] [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2017) Calibrating and interpreting implicit-texture models of foam flow through porous media of different permeabilities, J. Pet. Sci. Eng. 159, 588–602. [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2017) Equivalence between semi-empirical and population-balance foam models, Trans. Porous Media 120, 3, 473–493. [CrossRef] [MathSciNet] [Google Scholar]
  • Weaire D., Hutzler S. (1999) The physics of foams, Oxford University Press. [Google Scholar]
  • de Gennes P.-G., Brochard-Wyart F., Quéré D. (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer-Verlag. [CrossRef] [Google Scholar]
  • Bouquet S., Douarche F., Roggero F., Bourbiaux B. (2020) Foam processes in naturally fractured carbonate oil-wet reservoirs: technical and economic analysis and optimization, J. Pet. Sci. Eng 190, 107111. [CrossRef] [Google Scholar]
  • Aziz K., Settari A. (1985) Petroleum reservoir simulation, Elsevier. [Google Scholar]
  • Fayers F.J. (1989) Extension of Stone’s method 1 and conditions for real characteristics in three-phase flow, SPE Res. Eng. 4, 4, 437–445. [CrossRef] [Google Scholar]
  • Hirasaki G.J., Lawson J.B. (1985) Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries, SPE J. 25, 2, 176–190. [Google Scholar]
  • Bretherton F.P. (1961) The motion of long bubbles in tubes, J. Fluid Mech. 10, 2, 166–188. [CrossRef] [MathSciNet] [Google Scholar]
  • Ma K., Ren G., Mateen K., Morel D., Cordelier P. (2015) Modeling techniques for foam flow in porous media, SPE J. 20, 3, 453–470. [CrossRef] [Google Scholar]
  • Ma K., Mateen K., Ren G., Luo H., Bourdarot G., Morel D. (2018) Mechanistic modeling of foam flow through porous media in the presence of oil: review of foam-oil interactions and an improved bubble population-balance model (Paper SPE 191 564), in: 2018 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September. [Google Scholar]
  • Chen Q., Kovscek A.R., Gerritsen M. (2010) Modeling foam displacement with the local-equilibrium approximation: theory and experimental verification, SPE J. 15, 1, 171–183. [CrossRef] [Google Scholar]
  • Kovscek A.R., Radke C.J. (1994) Fundamentals of foam transport in porous media, in: M.J. Comstock, L.L. Schramm (eds), Foams: fundamentals and applications in the petroleum industry, American Chemical Society Advances in Chemistry. [Google Scholar]
  • Patzek T.W. (1988) Description of foam flow in porous media by the population balance method, in: H.S. Duane (ed.), Surfactant-based mobility control, American Chemical Society Symposium Series, ACS, pp. 326–341, Available at https://pubs.acs.org/doi/pdf/10.1021/bk-1988-0373.ch016. [Google Scholar]
  • Falls A.H., Hirasaki G.J., Patzek T.W., Gauglitz D.A., Miller D.D., Ratulowski T. (1988) Development of a mechanistic foam simulator: the population balance and generation by snap-off, SPE Reserv. Eng. 3, 3, 884–892. [CrossRef] [Google Scholar]
  • Kam S.I., Nguyen Q.P., Li Q., Rossen W.R. (2007) Dynamic simulations with an improved model for foam generation, SPE J. 12, 1, 35–48. [CrossRef] [Google Scholar]
  • Kam S.I. (2008) Improved mechanistic foam simulation with foam catastrophe theory, Colloids Surf. A Physicochem. Eng. Asp. 318, 1–3, 62–77. [CrossRef] [Google Scholar]
  • Kovscek A.R., Bertin H.J. (2003) Foam mobility in heterogeneous porous media, Trans. Porous Media 52, 1, 37–49. [CrossRef] [Google Scholar]
  • Farajzadeh R., Eftekhari A. (2017) Effect of foam on liquid phase mobility in porous media, Sci. Rep. 43870, 3011–3018. [Google Scholar]
  • Farajzadeh R., Lotfollahi M., Eftekhari A.A., Rossen W.R., Hirasaki G.J.H. (2015) Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure, Energy Fuels 29, 5, 3011–3018. [Google Scholar]
  • Khatib Z.I., Hirasaki G.J., Falls A.H. (1988) Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media, SPE Res. Eng. 3, 3, 919–926. [CrossRef] [Google Scholar]
  • Kapetas L., Vincent-Bonnieu S., Farajzadeh R., Eftekhari A.A., Mohd-Shafian S.R., Kamarul Bahrim R.Z., Rossen W.R. (2015) Effect of permeability on foam-model parameters – an integrated approach from coreflood experiments through to foam diversion calculations, in 18th European Improved Oil Recovery Symposium, Dresden, Germany, 14–16 April. [Google Scholar]
  • Jian G., Zhang L., Da C., Puerto M., Johnston K.P., Biswal S.L., Hirasaki G.J. (2019) Evaluating the transport behavior of CO2 foam in the presence of crude oil under high-temperature and high-salinity conditions for carbonate reservoirs, Energy Fuels 33, 6038–6047. [CrossRef] [Google Scholar]
  • Bergeron V., Radke C.J. (1992) Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films, Langmuir 8, 12, 3020–3026. [CrossRef] [Google Scholar]
  • Soulat A., Douarche F., Flauraud E. (2020) A modified well index to account for shear-thinning behavior in foam EOR simulation, J. Pet. Sci. Eng. 191, 107146. [CrossRef] [Google Scholar]
  • Peaceman D. (1978) Interpretation of well-block pressures in numerical reservoir simulation, SPE J. 18, 3, 182–194. [Google Scholar]
  • Batôt G., Delaplace P., Bourbiaux B., Pedroni L.G., Nabzar L., Douarche F., Chabert M. (2016) WAG management with foams: influence of injected gas properties and surfactant adsorption (Paper SPE 183 326), in: Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 7–10 November. [Google Scholar]
  • Brooks R.H., Corey A.T. (1966) Properties of porous media affecting fluid flow, J. Irrig. Drain. Div. 92, 2, 61–88. [CrossRef] [Google Scholar]
  • Standing M.B. (1974) Notes on relative permeability relationships, Technical report, Division of Petroleum Engineering and Applied Geophysics, Norwegian Institute of Technology, University of Trondheim. Available at https://blasingame.engr.tamu.edu/z_zCourse_Archive/P620_18C/P620_zReference/PDF_Txt_Std_Kr_Notes_(1973).pdf. [Google Scholar]
  • de Figueiredo L., Grana D., Le Ravalec M. (2020) Revisited formulation and applications of FFT moving average, Math. Geosci. 52, 6, 810–816. [Google Scholar]
  • Le Ravalec M., Nœtinger B., Hu L.Y. (2000) The fft moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations, Mathe. Geol. 32, 6, 701–723. [CrossRef] [Google Scholar]
  • Dykstra H., Parsons R.L. (1950) The prediction of oil recovery by waterflood, in: Secondary recovery of oil in the United States, American Petroleum Institute, Washington, DC, pp. 160–174. [Google Scholar]
  • Craig F.F. (1993) The reservoir engineering aspects of waterflooding, volume 3 of SPE Monograph Series, Society of Petroleum Engineers. [Google Scholar]
  • Willhite G.P. (1986) Waterflooding, volume 3 of SPE Textbook Series, Society of Petroleum Engineers. [Google Scholar]
  • Lake L.W. (1989) Enhanced oil recovery, Prentice Hall. [Google Scholar]
  • Green D.W., Willhite G.P. (1998) Enhanced oil recovery, volume 6 of SPE Textbook Series, Society of Petroleum Engineers. [Google Scholar]
  • Douarche F., Braconnier B., Bourbiaux B. (2020) Scaling foam flow models in heterogeneous reservoirs for a better improvement of sweep efficiency (Paper ThB04), in: 17th European Conference of the Mathematics of Oil Recovery (ECMOR), Edinburgh, Scotland, 14–17 September. [Google Scholar]
  • Pedroni L., Nabzar L. (2016) New insights on foam rheology in porous media, in: Rio Oil and Gas Expo and Conference Proceedings, Rio de Janeiro/Brazil, 24–27 October, (IBP. ISSN 2525 7560). [Google Scholar]
  • Weber K.J., van Geuns L.C. (1990) Framework for constructing clastic reservoir simulation models, J. Pet. Technol. 42, 1248–1297. [CrossRef] [Google Scholar]
  • Leverett M.C. (1941) Capillary behavior in porous solids (Paper SPE-941152-G), Trans. AIME 142, 152–169. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.