Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Numéro d'article | 43 | |
Nombre de pages | 8 | |
DOI | https://doi.org/10.2516/stet/2023028 | |
Publié en ligne | 22 décembre 2023 |
- Kaya I., Colak M., Terzi F. (2019) A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making, Energy Strategy Rev. 24, 207–228. https://doi.org/10.1016/j.esr.2019.03.003. [CrossRef] [Google Scholar]
- Nwaigwe K.N., Mutabilwa P., Dintwa E. (2019) An overview of solar power (PV systems) integration into electricity grids, Mater. Sci. Energy Technol. 2, 3, 629–633. https://doi.org/10.1016/j.mset.2019.07.002. [Google Scholar]
- Shahzad M.W., Burhan M., Ang L., Ng K.C. (2017) Energy-water-environment nexus underpinning future desalination sustainability, Desalination 413, 52–64. https://doi.org/10.1016/j.desal.2017.03.009. [CrossRef] [Google Scholar]
- Wang W., Shi Y., Zhang C., Hong S., Shi L., Chang J., Li R., Jin Y., Ong C., Zhuo S., Wang P. (2019) Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation, Nat. Commun. 10, 1, 3012. https://doi.org/10.1038/s41467-019-10817-6. [CrossRef] [Google Scholar]
- Scarlat N., Prussi M., Padella M. (2022) Quantification of the carbon intensity of electricity produced and used in Europe, Appl. Energy 305, 117901. https://doi.org/10.1016/j.apenergy.2021.117901. [CrossRef] [Google Scholar]
- Liu Z., An G., Xia X., Wu S., Li S., Wang L. (2021) The potential use of metal–organic framework/ammonia working pairs in adsorption chillers, J. Mater. Chem. A. 9, 6188–6195. https://doi.org/10.1039/D1TA00255D. [CrossRef] [Google Scholar]
- Demir M.E., Dincer I. (2021) Development and assessment of a solar driven trigeneration system with storage for electricity, ammonia and fresh water production, Energy Convers. Manag. 245, 114585. https://doi.org/10.1016/j.enconman.2021.114585. [CrossRef] [Google Scholar]
- El Fil B., Garimella S. (2022) Energy-efficient gas-fired tumble dryer with adsorption thermal storage, Energy 239, 121708. https://doi.org/10.1016/j.energy.2021.121708. [CrossRef] [Google Scholar]
- Paredes-Sánchez B.M., Paredes J.P., Caparrini N., Rivo-López E. (2021) Analysis of district heating and cooling energy systems in Spain: resources, technology and management, Sustainability 13, 5442. https://doi.org/10.3390/su13105442. [CrossRef] [Google Scholar]
- Liu Y., Hu X., Luo X., Zhou Y., Wang D., Farah S. (2020) Identifying the most significant input parameters for predicting district heating load using an association rule algorithm, J. Clean Prod. 275, 122984. https://doi.org/10.1016/j.jclepro.2020.122984. [CrossRef] [Google Scholar]
- Gładysz P., Sowiżdżał A., Miecznik M., Pająk L. (2020) Carbon dioxide-enhanced geothermal systems for heat and electricity production: energy and economic analyses for central Poland, Energy Convers. Manag. 220, 113142. https://doi.org/10.1016/j.enconman.2020.113142. [CrossRef] [Google Scholar]
- Dabwan Y.N., Pei G., Gao G., Feng J., Li J. (2020) A novel integrated solar tri-generation system for cooling, freshwater and electricity production purpose: energy, economic and environmental performance analysis, Sol. Energy 198, 139–50. https://doi.org/10.1016/j.solener.2020.01.043. [CrossRef] [Google Scholar]
- Bellos E., Tzivanidis C. (2020) Concentrating solar collectors for a trigeneration system – a comparative study, Appl. Sci. 10, 4492. https://doi.org/10.3390/app10134492. [CrossRef] [Google Scholar]
- Jafary S., Khalilarya S., Shawabkeh A., Wae-hayee M., Hashemian M. (2021) A complete energetic and exergetic analysis of a solar powered trigeneration system with two novel organic Rankine cycle (ORC) configurations, J. Clean Prod. 281, 124552. https://doi.org/10.1016/j.jclepro.2020.124552. [CrossRef] [Google Scholar]
- Chen Y., Zhao D., Xu J., Wang J., Lund P.D. (2021) Performance analysis and exergo-economic optimization of a solar-driven adjustable tri-generation system, Energy Convers. Manag. 233, 113873. https://doi.org/10.1016/j.enconman.2021.113873. [CrossRef] [Google Scholar]
- Sebastián A., Abbas R., Valdés M., Rovira A. (2021) Modular micro-trigeneration system for a novel rotatory solar Fresnel collector: a design space analysis, Energy Convers. Manag. 227, 113599. https://doi.org/10.1016/j.enconman.2020.113599. [CrossRef] [Google Scholar]
- Li Z., Chen H., Xu Y., Ooi K.T. (2020) Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors, Energy Convers. Manag. 215, 112895. https://doi.org/10.1016/j.enconman.2020.112895. [CrossRef] [Google Scholar]
- Meng X., Yang F., Bao Z., Deng J., Serge N.N., Zhang Z. (2010) Theoretical study of a novel solar trigeneration system based on metal hydrides, Appl. Energy 87, 2050–2061. https://doi.org/10.1016/j.apenergy.2009.11.023. [CrossRef] [Google Scholar]
- Hassan H.Z., Mohamad A.A., Bennacer R. (2011) Simulation of an adsorption solar cooling system, Energy 36, 530–537. https://doi.org/10.1016/j.energy.2010.10.011. [CrossRef] [Google Scholar]
- Florides G.A., Kalogirou S.A., Tassou S.A., Wrobel L.C. (2002) Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system, Appl. Therm. Eng. 22, 1313–25. https://doi.org/10.1016/S1359-4311(02)00054-6. [CrossRef] [Google Scholar]
- Calise F., Cappiello F.L., d’Accadia M.D., Vicidomini M. (2020) Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: a dynamic approach, Energy 208, 118295. https://doi.org/10.1016/j.energy.2020.118295. [CrossRef] [Google Scholar]
- Sabadash V., Gumnitsky J., Lyuta O. (2020) Combined adsorption of the copper and chromium cations by clinoptilolite of the sokyrnytsya deposit, J. Ecol. Eng. 21, 42–46. https://doi.org/10.12911/22998993/122185. [CrossRef] [Google Scholar]
- Fong K.F., Lee C.K. (2020) Solar desiccant cooling system for hot and humid region – a new perspective and investigation, Sol. Energy 195, 677–684. https://doi.org/10.1016/j.solener.2019.12.009. [CrossRef] [Google Scholar]
- Al-Sulaiman F.A., Dincer I., Hamdullahpur F. (2011) Exergy modeling of a new solar driven trigeneration system, Sol. Energy 85, 2228–2243. https://doi.org/10.1016/j.solener.2011.06.009. [CrossRef] [Google Scholar]
- Alshuraiaan B. (2021) Evaluation of the thermal performance of various nanofluids used to harvest solar energy, Energy Ecol. Environ. 6, 531–539. https://doi.org/10.1007/s40974-021-00213-6. [CrossRef] [Google Scholar]
- Ealia S.A.M., Saravanakumar M.P. (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application, in: IOP Conference Series: Materials Science and Engineering, Vol. 263, IOP Publishing, Bristol, p. 032019. https://doi.org/10.1088/1757-899X/263/3/032019. [CrossRef] [Google Scholar]
- Jiang Y., Zhang H., Wang Y., You S., Wu Z., Fan M., Wang L., Wei S. (2021) A comparative study on the performance of a novel triangular solar air collector with tilted transparent cover plate, Sol. Energy 227, 224–235. https://doi.org/10.1016/j.solener.2021.08.083. [CrossRef] [Google Scholar]
- Calise F., Cappiello F.L., d’Accadia M.D., Vicidomini M. (2021) Thermo-economic optimization of a novel hybrid renewable trigeneration plant, Renew. Energy 175, 532–549. https://doi.org/10.1016/j.renene.2021.04.069. [CrossRef] [Google Scholar]
- Eguchi S., Takayabu H., Lin C. (2021) Sources of inefficient power generation by coal-fired thermal power plants in China: a metafrontier DEA decomposition approach, Renew. Sustain. Energy Rev. 138, 110562. https://doi.org/10.1016/j.rser.2020.110562. [Google Scholar]
- Gholizadeh T., Vajdi M., Rostamzadeh H. (2020) A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source, Renew. Energy 148, 31–43. https://doi.org/10.1016/j.renene.2019.11.154. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.