Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Article Number 42
Number of page(s) 40
Published online 22 December 2023
  • Hirasaki G.J., Miller C.A., Szafranski R., Lawson J.B., Akiya N. (1997) Surfactant/foam process for aquifer remediation (Paper SPE 37 257), in: 1997 SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 18–21 February. [Google Scholar]
  • Mamun C.K., Rong J.G., Kam S.I., Liljestrand H.M., Rossen W.R. (2002) Extending foam technology form improved oil recovery to environmantal remediation (Paper SPE 77557-MS), in: SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October. [Google Scholar]
  • Atteia O., Del Campo Estrada E., Bertin H. (2013) Soil flushing: a review of the origin of efficiency variability, Rev. Environ. Sci. Biotechnol. 12, 379–389. [CrossRef] [Google Scholar]
  • Bertin H., Del Campo Estrada E., Atteia O. (2017) Foam placement for soil remediation, Environ. Chem. 14, 338–343. [CrossRef] [Google Scholar]
  • Karthick A., Roy B., Chattopadhyay P. (2019) A review on the application of chemical surfacant and surfacant foam for remediation of petroleum oil contaminated soil, J. Envoron. Manage. 243, 187–205. [CrossRef] [Google Scholar]
  • Flaifel H., Izadi M., Park S., Gupta I., Lee G., Kam S.I. (2020) Shallow subsurface environmental remediation by using tracer-surfacant-foam processes: history-matching and performance prediction, Trans. Porous Media 134, 565–592. [CrossRef] [Google Scholar]
  • Bouquet S., Douarche F., Roggero F., Leray S. (2020) Characterization of viscous fingering and channeling for the assessment of polymer-based heavy oil displacements, Trans. Porous Media 131, 873–906. [CrossRef] [Google Scholar]
  • Puma is co-marketed by Beicip-Franlab and KAPPA Engineering, Available at and [Google Scholar]
  • Bernard G., Jacobs W.L. (1965) Effect of foam on trapped gas saturation and on permeability of porous media to water, Soc. Pet. Eng. J. 5, 4, 295–300. [CrossRef] [Google Scholar]
  • Lawson J.B., Reisberg J. (1980) Alternate slugs of gas and dilute surfactant for mobility control during chemical flooding (Paper SPE-8839-MS), in: SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April. [Google Scholar]
  • Friedmann F., Chen W.H., Gauglitz P.A. (1991) Experimental and simulation study of high-temperature foam displacement in porous media, SPE Res. Eng. 6, 1, 37–45. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1977) Fundamentals of numerical reservoir simulation, volume 6 of Developments in Petroleum Science, Elsevier Science, Amsterdam. [Google Scholar]
  • Trangenstein J.A., Bell J.B. (1989) Mathematical structure of the black-oil model for petroleum reservoir simulation, SIAM J. Appl. Math. 49, 3, 749–783. [Google Scholar]
  • Marle C.M. (1981) Multiphase flow in porous media, 3rd edn., Gulf Publishing Company. [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2020) Calibrating and scaling semi-empirical foam flow models for the assessment of foam-based EOR processes (in heterogeneous reservoirs), Trans. Porous Media 131, 1, 193–221. [CrossRef] [MathSciNet] [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2017) Calibrating and interpreting implicit-texture models of foam flow through porous media of different permeabilities, J. Pet. Sci. Eng. 159, 588–602. [Google Scholar]
  • Gassara O., Douarche F., Braconnier B., Bourbiaux B. (2017) Equivalence between semi-empirical and population-balance foam models, Trans. Porous Media 120, 3, 473–493. [CrossRef] [MathSciNet] [Google Scholar]
  • Weaire D., Hutzler S. (1999) The physics of foams, Oxford University Press. [Google Scholar]
  • de Gennes P.-G., Brochard-Wyart F., Quéré D. (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer-Verlag. [CrossRef] [Google Scholar]
  • Bouquet S., Douarche F., Roggero F., Bourbiaux B. (2020) Foam processes in naturally fractured carbonate oil-wet reservoirs: technical and economic analysis and optimization, J. Pet. Sci. Eng 190, 107111. [CrossRef] [Google Scholar]
  • Aziz K., Settari A. (1985) Petroleum reservoir simulation, Elsevier. [Google Scholar]
  • Fayers F.J. (1989) Extension of Stone’s method 1 and conditions for real characteristics in three-phase flow, SPE Res. Eng. 4, 4, 437–445. [CrossRef] [Google Scholar]
  • Hirasaki G.J., Lawson J.B. (1985) Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries, SPE J. 25, 2, 176–190. [Google Scholar]
  • Bretherton F.P. (1961) The motion of long bubbles in tubes, J. Fluid Mech. 10, 2, 166–188. [CrossRef] [MathSciNet] [Google Scholar]
  • Ma K., Ren G., Mateen K., Morel D., Cordelier P. (2015) Modeling techniques for foam flow in porous media, SPE J. 20, 3, 453–470. [CrossRef] [Google Scholar]
  • Ma K., Mateen K., Ren G., Luo H., Bourdarot G., Morel D. (2018) Mechanistic modeling of foam flow through porous media in the presence of oil: review of foam-oil interactions and an improved bubble population-balance model (Paper SPE 191 564), in: 2018 SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September. [Google Scholar]
  • Chen Q., Kovscek A.R., Gerritsen M. (2010) Modeling foam displacement with the local-equilibrium approximation: theory and experimental verification, SPE J. 15, 1, 171–183. [CrossRef] [Google Scholar]
  • Kovscek A.R., Radke C.J. (1994) Fundamentals of foam transport in porous media, in: M.J. Comstock, L.L. Schramm (eds), Foams: fundamentals and applications in the petroleum industry, American Chemical Society Advances in Chemistry. [Google Scholar]
  • Patzek T.W. (1988) Description of foam flow in porous media by the population balance method, in: H.S. Duane (ed.), Surfactant-based mobility control, American Chemical Society Symposium Series, ACS, pp. 326–341, Available at [Google Scholar]
  • Falls A.H., Hirasaki G.J., Patzek T.W., Gauglitz D.A., Miller D.D., Ratulowski T. (1988) Development of a mechanistic foam simulator: the population balance and generation by snap-off, SPE Reserv. Eng. 3, 3, 884–892. [CrossRef] [Google Scholar]
  • Kam S.I., Nguyen Q.P., Li Q., Rossen W.R. (2007) Dynamic simulations with an improved model for foam generation, SPE J. 12, 1, 35–48. [CrossRef] [Google Scholar]
  • Kam S.I. (2008) Improved mechanistic foam simulation with foam catastrophe theory, Colloids Surf. A Physicochem. Eng. Asp. 318, 1–3, 62–77. [CrossRef] [Google Scholar]
  • Kovscek A.R., Bertin H.J. (2003) Foam mobility in heterogeneous porous media, Trans. Porous Media 52, 1, 37–49. [CrossRef] [Google Scholar]
  • Farajzadeh R., Eftekhari A. (2017) Effect of foam on liquid phase mobility in porous media, Sci. Rep. 43870, 3011–3018. [Google Scholar]
  • Farajzadeh R., Lotfollahi M., Eftekhari A.A., Rossen W.R., Hirasaki G.J.H. (2015) Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure, Energy Fuels 29, 5, 3011–3018. [Google Scholar]
  • Khatib Z.I., Hirasaki G.J., Falls A.H. (1988) Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media, SPE Res. Eng. 3, 3, 919–926. [CrossRef] [Google Scholar]
  • Kapetas L., Vincent-Bonnieu S., Farajzadeh R., Eftekhari A.A., Mohd-Shafian S.R., Kamarul Bahrim R.Z., Rossen W.R. (2015) Effect of permeability on foam-model parameters – an integrated approach from coreflood experiments through to foam diversion calculations, in 18th European Improved Oil Recovery Symposium, Dresden, Germany, 14–16 April. [Google Scholar]
  • Jian G., Zhang L., Da C., Puerto M., Johnston K.P., Biswal S.L., Hirasaki G.J. (2019) Evaluating the transport behavior of CO2 foam in the presence of crude oil under high-temperature and high-salinity conditions for carbonate reservoirs, Energy Fuels 33, 6038–6047. [CrossRef] [Google Scholar]
  • Bergeron V., Radke C.J. (1992) Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films, Langmuir 8, 12, 3020–3026. [CrossRef] [Google Scholar]
  • Soulat A., Douarche F., Flauraud E. (2020) A modified well index to account for shear-thinning behavior in foam EOR simulation, J. Pet. Sci. Eng. 191, 107146. [CrossRef] [Google Scholar]
  • Peaceman D. (1978) Interpretation of well-block pressures in numerical reservoir simulation, SPE J. 18, 3, 182–194. [Google Scholar]
  • Batôt G., Delaplace P., Bourbiaux B., Pedroni L.G., Nabzar L., Douarche F., Chabert M. (2016) WAG management with foams: influence of injected gas properties and surfactant adsorption (Paper SPE 183 326), in: Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 7–10 November. [Google Scholar]
  • Brooks R.H., Corey A.T. (1966) Properties of porous media affecting fluid flow, J. Irrig. Drain. Div. 92, 2, 61–88. [CrossRef] [Google Scholar]
  • Standing M.B. (1974) Notes on relative permeability relationships, Technical report, Division of Petroleum Engineering and Applied Geophysics, Norwegian Institute of Technology, University of Trondheim. Available at [Google Scholar]
  • de Figueiredo L., Grana D., Le Ravalec M. (2020) Revisited formulation and applications of FFT moving average, Math. Geosci. 52, 6, 810–816. [Google Scholar]
  • Le Ravalec M., Nœtinger B., Hu L.Y. (2000) The fft moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations, Mathe. Geol. 32, 6, 701–723. [CrossRef] [Google Scholar]
  • Dykstra H., Parsons R.L. (1950) The prediction of oil recovery by waterflood, in: Secondary recovery of oil in the United States, American Petroleum Institute, Washington, DC, pp. 160–174. [Google Scholar]
  • Craig F.F. (1993) The reservoir engineering aspects of waterflooding, volume 3 of SPE Monograph Series, Society of Petroleum Engineers. [Google Scholar]
  • Willhite G.P. (1986) Waterflooding, volume 3 of SPE Textbook Series, Society of Petroleum Engineers. [Google Scholar]
  • Lake L.W. (1989) Enhanced oil recovery, Prentice Hall. [Google Scholar]
  • Green D.W., Willhite G.P. (1998) Enhanced oil recovery, volume 6 of SPE Textbook Series, Society of Petroleum Engineers. [Google Scholar]
  • Douarche F., Braconnier B., Bourbiaux B. (2020) Scaling foam flow models in heterogeneous reservoirs for a better improvement of sweep efficiency (Paper ThB04), in: 17th European Conference of the Mathematics of Oil Recovery (ECMOR), Edinburgh, Scotland, 14–17 September. [Google Scholar]
  • Pedroni L., Nabzar L. (2016) New insights on foam rheology in porous media, in: Rio Oil and Gas Expo and Conference Proceedings, Rio de Janeiro/Brazil, 24–27 October, (IBP. ISSN 2525 7560). [Google Scholar]
  • Weber K.J., van Geuns L.C. (1990) Framework for constructing clastic reservoir simulation models, J. Pet. Technol. 42, 1248–1297. [CrossRef] [Google Scholar]
  • Leverett M.C. (1941) Capillary behavior in porous solids (Paper SPE-941152-G), Trans. AIME 142, 152–169. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.