Table A1

The major symbols and their definitions.

Symbol Definition
X ∈ ℝN × C Observation data matrix of wind turbines with N features and C time points.
Xt ∈ ℝN × 1 Wind power data vector at timestamp t, and xi represents the i-th feature.
ϕ (·) Nonlinear function for DSTG model fitting.
Y ̂ R t × 1 $ \widehat{Y}\in {\mathbb{R}}^{{t}^\mathrm{\prime}\times 1}$ Predicted active power values for t' time steps.
G T = ( V , E , A ) $ {G}_T=(V,\mathcal{E},{A})$ Temporal graph, where V is the set of nodes, E $ \mathcal{E}$ is the edge set, and A is the adjacency matrix.
V ∈ ℝ1 × N Set of nodes representing multivariate signals.
F i R N × F emmd $ {{F}}_i\in {\mathbb{R}}^{N\times {F}_{\mathrm{emmd}}}$ Feature matrix for each time series variable x i $ {x}_i$ after EEMD.
E mn $ {\mathcal{E}}_{{mn}}$ Edge weight representing the connection between nodes zm and zn.
Amn = g(zmzn) Adaptive function to determine edge connectivity based on node features.
Lgsl Loss function for graph structure learning incorporating distance and regularization.
I , F , O $ \mathcal{I},\mathcal{F},\mathcal{O}$ and H $ \mathcal{H}$ Gates in the GAL-cell: input, forget, output gates and hidden states.
w Trainable weight vector for GSL module.
W Trainable matrices for different DTG layers.
E t G $ {{E}}_t^{\mathcal{G}}$ Feature matrices for the t-th graph structure.
Lmse Mean squared error loss between true and predicted values.
Ls Regularization terms for time smoothness.
Ltotal Total loss function for model optimization.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.