Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 9
Number of page(s) 12
DOI https://doi.org/10.2516/stet/2024100
Published online 06 January 2025
  • Deng X., Shao H., Hu C., Jiang D., Jiang Y. (2020) Wind power forecasting methods based on deep learning: A survey, Comput. Model. Eng. Sci. 122, 1, 273–302. [Google Scholar]
  • Foley A.M., Leahy P.G., Marvuglia A., McKeogh E.J. (2012) Current methods and advances in forecasting of wind power generation, Renew. Energy 37, 1, 1–8. [CrossRef] [Google Scholar]
  • Wang X., Guo P., Huang X. (2011) A review of wind power forecasting models, Energy Proc. 12, 770–778. [CrossRef] [Google Scholar]
  • Wang H.Z., Li G.Q., Wang G.B., Peng J.C., Jiang H., Liu Y.T. (2017) Deep learning based ensemble approach for probabilistic wind power forecasting, Appl. Energy 188, 56–70. [CrossRef] [Google Scholar]
  • Tastu J., Pinson P., Trombe P.J., Madsen H. (2013) Probabilistic forecasts of wind power generation accounting for geographically dispersed information, IEEE Trans. Smart Grid 5, 1, 480–489. [Google Scholar]
  • Chen C., Liu H. (2020) Medium-term wind power forecasting based on multi-resolution multi-learner ensemble and adaptive model selection, Energy Convers. Manag. 206, 112492. [CrossRef] [Google Scholar]
  • Landberg L. (1998) A mathematical look at a physical power prediction model, Wind Energy 1, 1, 23–28. [CrossRef] [Google Scholar]
  • Chen P., Pedersen T., Bak-Jensen B., Chen Z. (2009) ARIMA-based time series model of stochastic wind power generation, IEEE Trans. Power Syst. 25, 2, 667–676. [Google Scholar]
  • Wang Q., Liu W., Yu H., Zheng S., Gao S., Granelli F. (2019) CPAC: Energy-efficient algorithm for IoT sensor networks based on enhanced hybrid intelligent swarm, Comput. Model. Eng. Sci. 121, 1, 83–103. [Google Scholar]
  • Milligan M., Schwartz M., Wan Y.H. (2003) Statistical wind power forecasting models: Results for US wind farms, NREL/CP-500-33956, National Renewable Energy Lab (NREL), Golden, CO (United States). [Google Scholar]
  • Sideratos G., Hatziargyriou N.D. (2007) An advanced statistical method for wind power forecasting, IEEE Trans. Power Syst. 22, 1, 258–265. [CrossRef] [Google Scholar]
  • Yuan X., Tan Q., Lei X., Yuan Y., Wu X. (2017) Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine, Energy 129, 122–137. [CrossRef] [Google Scholar]
  • Adedipe T., Shafiee M., Zio E. (2020) Bayesian network modelling for the wind energy industry: An overview, Reliab. Eng. Syst. Saf. 202, 107053. [CrossRef] [Google Scholar]
  • Sun W., Wang Y. (2018) Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network, Energy Convers. Manag. 157, 1–12. [CrossRef] [Google Scholar]
  • Hu Q., Zhang S., Yu M., Xie Z. (2015) Short-term wind speed or power forecasting with heteroscedastic support vector regression, IEEE Trans. Sustain. Energy 7, 1, 241–249. [Google Scholar]
  • Zeng J., Qiao W. 2011 Support vector machine-based short-term wind power forecasting, in: 2011 IEEE/PES Power Syst. Conf. Expos., IEEE, pp. 1–8. [Google Scholar]
  • Liu H., Tian H.Q., Li Y.F. (2015) Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms, Energy Convers. Manag. 100, 16–22. [CrossRef] [Google Scholar]
  • Hong Y.Y., Rioflorido C.L.P.P. (2019) A hybrid deep learning-based neural network for 24-h ahead wind power forecasting, Appl. Energy 250, 530–539. [CrossRef] [Google Scholar]
  • Liu X., Zhou J. (2024) Short-term wind power forecasting based on multivariate/multi-step LSTM with temporal feature attention mechanism, Appl. Soft Comput. 150, 111050. [CrossRef] [Google Scholar]
  • Chen J., Zeng G.Q., Zhou W., Du W., Lu K.D. (2018) Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization, Energy Convers. Manag. 165, 681–695. [CrossRef] [Google Scholar]
  • Yildiz C., Acikgoz H., Korkmaz D., Budak U. (2021) An improved residual-based convolutional neural network for very short-term wind power forecasting, Energy Convers. Manag. 228, 113731. [CrossRef] [Google Scholar]
  • Yin H., Ou Z., Huang S., Meng A. (2019) A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition, Energy 189, 116316. [CrossRef] [Google Scholar]
  • Liu H., Mi X., Li Y., Duan Z., Xu Y. (2019) Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression, Renew. Energy 143, 842–854. [CrossRef] [Google Scholar]
  • Zhao Z., Yun S., Jia L., Guo J., Meng Y., He N., Yang L. (2023) Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features, Eng. Appl. Artif. Intell. 121, 105982. [CrossRef] [Google Scholar]
  • Wu H., Xu J., Wang J., Long M. (2021) Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting, Adv. Neural Inf. Process. Syst. 34, 22419–22430. [Google Scholar]
  • Zhou H., Ren D., Xia H., Fan M., Yang X., Huang H. (2021) Ast-gnn: An attention-based spatio-temporal graph neural network for interaction-aware pedestrian trajectory prediction, Neurocomputing 445, 298–308. [CrossRef] [Google Scholar]
  • Li H. (2022) Short-term wind power prediction via spatial temporal analysis and deep residual networks, Front. Energy Res. 10, 920407. [CrossRef] [Google Scholar]
  • Song Y., Tang D., Yu J., Yu Z., Li X. (2022) Short-term forecasting based on graph convolution networks and multiresolution convolution neural networks for wind power, IEEE Trans. Ind. Inf. 19, 2, 1691–1702. [Google Scholar]
  • Liu Z., Li M., Yang B., Wei H. (2022) Spatial wind power forecasting using a GRU-based model. Baidu KDD Cup, WindTeam CSU123. [Google Scholar]
  • Wang S., Zhang N., Wu L., Wang Y. (2016) Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method, Renew. Energy 94, 629–636. [CrossRef] [Google Scholar]
  • Hamilton W., Ying Z., Leskovec J. (2017) Inductive representation learning on large graphs, Adv. Neural Inf. Process. Syst. 30, 1025–1035. [Google Scholar]
  • Veličković P., Cucurull G., Casanova A., Romero A., Lio P., Bengio Y. (2017) Graph attention networks, Stat 1050, 20, 10–48550. arXiv preprint arXiv:1710.10903. [Google Scholar]
  • Bruna J., Zaremba W., Szlam A., LeCun Y. (2013) Spectral networks and locally connected networks on graphs, arXiv preprint arXiv:1312.6203. [Google Scholar]
  • Defferrard M., Bresson X., Vandergheynst P. (2016) Convolutional neural networks on graphs with fast localized spectral filtering, Adv. Neural Inf. Process. Syst. 29, 3844–3852. [Google Scholar]
  • Khodayar M., Wang J. (2018) Spatio-temporal graph deep neural network for short-term wind speed forecasting, IEEE Trans. Sustain. Energy 10, 2, 670–681. [Google Scholar]
  • Bentsen L.Ø., Warakagoda N.D., Stenbro R., Engelstad P. (2022) May) Wind park power prediction: Attention-based graph networks and deep learning to capture wake losses, In J. Phys.: Conf. Ser 2265, 2, 022035. IOP Publishing. [CrossRef] [Google Scholar]
  • Wu Z., Huang N.E. (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal. 1, 1, 1–41. [CrossRef] [Google Scholar]
  • Li Y., Yu R., Shahabi C., Liu Y. (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting, ICLR-2018. arXiv preprint arXiv:1707.01926. [Google Scholar]
  • Bai L., Yao L., Li C., Wang X., Wang C. (2020) Adaptive graph convolutional recurrent network for traffic forecasting, Adv. Neural Inf. Process. Syst. 33, 17804–17815. [Google Scholar]
  • Zhang Y., Liu L., Xiong X., Li G., Wang G., Lin L. (2023) Long-term wind power forecasting with hierarchical spatial-temporal transformer, IJCAI-2023, 6308–6316. arXiv preprint arXiv:2305.18724. [CrossRef] [Google Scholar]
  • Xu B., Shen H., Cao Q., Qiu Y., Cheng X. (2019) Graph wavelet neural network, ICLR-2019. arXiv preprint arXiv:1904.07785. [Google Scholar]
  • Liu M., Zeng A., Chen M., Xu Z., Lai Q., Ma L., Xu Q. (2022) Scinet: Time series modeling and forecasting with sample convolution and interaction, Adv. Neural Inf. Process. Syst. 35, 5816–5828. [Google Scholar]
  • Yu Y., Si X., Hu C., Zhang J. (2019) A review of recurrent neural networks: LSTM cells and network architectures, Neural Comput. 31, 7, 1235–1270. [CrossRef] [Google Scholar]
  • De Myttenaere A., Golden B., Le Grand B., Rossi F. (2016) Mean absolute percentage error for regression models, Neurocomputing 192, 38–48. [CrossRef] [Google Scholar]
  • Liu Z.H., Wang C.T., Wei H.L., Zeng B., Li M., Song X.P. (2024) A wavelet-LSTM model for short-term wind power forecasting using wind farm SCADA data, Expert Syst. with Appl. 247, 123237. [CrossRef] [Google Scholar]
  • Yang T., Yang Z., Li F., Wang H. (2024) A short-term wind power forecasting method based on multivariate signal decomposition and variable selection, Appl. Energy 360, 122759. [CrossRef] [Google Scholar]
  • Alanazi M.A., Aloraini M., Islam M., Alyahya S., Khan S. (2023) Wind energy assessment using Weibull distribution with different numerical estimation methods: a case study, Eme. Sci. J. 7, 6, 2260–2278. [CrossRef] [Google Scholar]
  • Bedewy B.A.H., Al-Timimy S.R.A. (2023) Estimate suitable location of solar power plants distribution by GIS spatial analysis, Civil Eng. J. 9, 5, 1217–1229. [CrossRef] [Google Scholar]
  • Balal A.T., Jafarabadi Y.P.T., Demir A.T., Igene M.T., Giesselmann M.T., Bayne S.T. (2023) Forecasting solar power generation utilizing machine learning models in Lubbock, Eme. Sci. J. 7, 4, 1052–1062. [CrossRef] [Google Scholar]
  • Sharma S., Sharma S., Athaiya A. (2017) Activation functions in neural networks, Towards Data Sci. 6, 12, 310–316. [Google Scholar]
  • Van Laarhoven T. (2017) L2 regularization versus batch and weight normalization, arXiv preprint arXiv:1706.05350. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.