Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 39 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.2516/stet/2023025 | |
Published online | 22 December 2023 |
- Liu Y., Hu C., Makoto S., Shigeo Y., Hidetsugu I., Masashi K. (2021) Motion response characteristics of a Kyushu-University semi-submersible floating wind turbine with trussed slender structures: experiment vs. numerical simulation. Ocean Eng. 232. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2021.109078. [Google Scholar]
- Aryai V., Abbassi R., Abdussamie N., Salehi F., Garaniya V., Asadnia M., Baksh A.-A., Penesis I., Karampour H., Draper S., Magee A., Keng A.K., Shearer C., Sivandran S., Yew L.K., Cook D., Underwood M., Martini A., Heasman K., Abrahams J., Wang C.-M. (2021) Reliability of multi-purpose offshore-facilities: present status and future direction in Australia, Process. Saf. Environ. Prot. 148, 437–461. https://doi.org/10.1016/j.psep.2020.10.016. [CrossRef] [Google Scholar]
- Laura C., Elson M., Guedes Soares C. (2016) Cost assessment methodology for combined wind and wave floating offshore renewable energy systems, Renewable Energy 97, 866–80. ISSN 0960-1481. https://doi.org/10.1016/j.renene.2016.06.016. [CrossRef] [Google Scholar]
- Robin C., Emmanuel A., Joseph A. (2021) A fleet based surplus production model that accounts for increases in fishing power with application to two West African pelagic stocks, Fish. Res. 243. https://doi.org/10.1016/j.fishres.2021.106048. [Google Scholar]
- Zheng L., Wang S., Cui M. (2022) Modeling and dynamic response analysis of a submersible floating offshore wind turbine integrated with aquaculture cage, Ocean Engineering 263, ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2022.112338. [Google Scholar]
- Aquafarms (2020) Hex Box. Available at http://www.oceanaquafarms.com/. [Google Scholar]
- Papandroulakis N., Papaioannou D., Divanach P. (2002) An automated feeding system for intensive hatcheries. Aquac. Eng. 26, 1, 13–26. ISSN 0144-8609. https://doi.org/10.1016/S0144-8609(01)00091-7. [CrossRef] [Google Scholar]
- Zheng X., Zheng H., Lei Y., Li Y., Li W. (2020) An offshore floating wind–solar–aquaculture system: concept design and extreme response in survival conditions, Energies 13, 3, 604–1. https://doi.org/10.3390/en13030604. [CrossRef] [Google Scholar]
- Zhang L., Zhang T., Zhang K. (2023) Research on power fluctuation strategy of hybrid energy storage to suppress wind-photovoltaic hybrid power system, Energy Reports 10, 3166–3173. ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2023.09.176. [CrossRef] [Google Scholar]
- Zhang Y., Song Y., Shen C., Chen N. (2023) Aerodynamic and structural analysis for blades of a 15MW floating offshore wind turbine. Ocean Eng. 287, 1, 115785. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2023.115785. [CrossRef] [Google Scholar]
- Wayman E., Sclavounos P., Butterfield S., Jonkman J., Musial W. (2006) Coupled dynamic modeling of floating wind turbine systems, in:2006 Offshore Technology Conference, 1–4 May 2006, Houston, TX, USA. [Google Scholar]
- Wayman E.N. (2006) Coupled dynamics and economic analysis of floating wind turbine systems. Dissertation, Massachusetts Institute of Technology, Massachusetts, USA. [Google Scholar]
- Ju G., Sweetman B., Tang S.R. (2022) Multiaxial fatigue assessment of floating offshore wind turbine blades operating on compliant floating platforms. Ocean Eng. 261, 111921. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2022.111921. [CrossRef] [Google Scholar]
- Sweetman B., Wang L. (2012) Floating offshore wind turbine dynamics: large-angle motions in euler-space, J. Offshore Mech. Arct. Eng. 134, 1903–1911. [CrossRef] [Google Scholar]
- Wang L., Sweetman B. (2012) Simulation of large- amplitude motion of floating wind turbines using conservation of momentum, Ocean Eng. 42, 155–164. [CrossRef] [Google Scholar]
- Nielsen F.G., Hanson T.D., Skaare B. (2006) Integrated dynamic analysis of floating offshor wind turbines, in: Proceedings of OMAE2006 25th International Conference on Offshore Mechanics and Arctic Engineering, 4–9 June 2006. [Google Scholar]
- Larsen T.J., Hanson T.D. (2007) A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, J Phys Conf Ser 75, 012073. [CrossRef] [Google Scholar]
- Karimirad M., Moan T. (2010) Extreme structural dynamic response of a SPAR type wind turbine, Trans Mech Eng. 17, 2, 146–156. [Google Scholar]
- Matha D., Fischer T., Kuhn M., Jonkman J. (2009) Model development and loads analysis of a wind turbine on a floating offshore tension leg platform, in: 2009 European Offshore Wind Conference and Exhibition, September, 2009, Stockholm, Sweden. [Google Scholar]
- Adam F., Myland T., Dahlhaus F., Großmann J. (2014) Scale tests of the GICON-TLP for wind turbines, in: Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 9A: Ocean Renewable Energy, San Francisco, California, USA, June 8–13, 2014. V09AT09A011. ASME. https://doi.org/10.1115/OMAE2014-23216. [Google Scholar]
- Uchida T., Gagnon Y. (2022) Effects of continuously changing inlet wind direction on near-to-far wake characteristics behind wind turbines over flat terrain, J. Wind Eng. Ind. Aerodyn. 220, 104869. https://doi.org/10.1016/j.jweia.2021.104869. [CrossRef] [Google Scholar]
- Tian L., Song Y., Xiao P., Zhao N., Shen W., Zhu C. (2022) A new three-dimensional analytical model for wind turbine wake turbulence intensity predictions. Renewable Energy 189, 762–776. ISSN 0960-1481. https://doi.org/10.1016/j.renene.2022.02.115. [CrossRef] [Google Scholar]
- Liu W., Shi J., Chen H., Liu H., Lin Z., Wang L. (2021) Lagrangian actuator model for wind turbine wake aerodynamics, Energy 232, 121074. https://doi.org/10.1016/j.energy.2021.121074. [CrossRef] [Google Scholar]
- Dong G., Li Z., Qin J., Yang X. (2022) Predictive capability of actuator disk models for wakes of different wind turbine designs, Renew. Energy 188, 269–281. https://doi.org/10.1016/j.renene.2022.02.034. [CrossRef] [Google Scholar]
- Lopes A.M.G., Vicente A.H.S.N., Sánchez O.H., Daus R., Koch H. (2022) Operation assessment of analytical wind turbine wake models. J. Wind Eng. Ind. Aerodyn. 220, 104840. ISSN 0167-6105. https://doi.org/10.1016/j.jweia.2021.104840. [CrossRef] [Google Scholar]
- Nakhchi M.E., Win Naung S., Rahmati M. (2022) A novel hybrid control strategy of wind turbine wakes in tandem configuration to improve power production, Energ. Convers. Manage. 260, 115575. https://doi.org/10.1016/j.enconman.2022.115575. [CrossRef] [Google Scholar]
- Jonkman J., Butterfield S., Musial W., Scott G. (2009) Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, Colorado, USA. [Google Scholar]
- Api D. (2005) Analysis of station keeping systems for floating structures, API RP 2SK, 3rd edn, American Petroleum Institute, Washington, DC, USA. [Google Scholar]
- Raffaella N., Micaela M., Massimiliano P., Laura P. (2023) Environmental cognitive load and spatial anxiety: What matters in navigation? J. Environ. Psychol. 88, 102032. ISSN 0272-4944. https://doi.org/10.1016/j.jenvp.2023.102032. [CrossRef] [Google Scholar]
- Kaplan J.O., Lai L. ARVE-Research/newspline: First official release. https://doi.org/10.5281/zenodo.5783076. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.