Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Article Number | 40 | |
Number of page(s) | 23 | |
DOI | https://doi.org/10.2516/stet/2023040 | |
Published online | 22 December 2023 |
- Aghbashlo M., Tabatabaei M., Mohammadi P., Khoshnevisan B., Rajaeifar M.A., Pakzad M. (2017) Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views, Energy Convers. Manag. 148, 1–15. https://doi.org/10.1016/j.enconman.2017.05.048. [CrossRef] [Google Scholar]
- Odibi C., Babaie M., Zare A., Nabi M.N., Bodisco T.A., Brown R.J. (2019) Exergy analysis of a diesel engine with waste cooking biodiesel and triacetin, Energy Convers. Manag. 198, 111912. https://doi.org/10.1016/j.enconman.2019.111912. [CrossRef] [Google Scholar]
- Dhanasekaran R., Krishnamoorthy V., Rana D., Saravanan S., Nagendran A., Kumar B.R. (2017) A sustainable and eco-friendly fueling approach for direct-injection diesel engines using restaurant yellow grease and n-pentanol in blends with diesel fuel, Fuel 193, 419–431. https://doi.org/10.1016/j.fuel.2016.12.030. [CrossRef] [Google Scholar]
- Çakmak A., Yeşilyurt M.K., Erol D., Doğan B. (2022) The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses, J. Therm. Anal. Calorim. 147, 20, 11231–11259. https://doi.org/10.1007/s10973-022-11357-w. [CrossRef] [Google Scholar]
- Balki M.K., Sayin C., Canakci M. (2014) The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine, Fuel 115, 901–906. https://doi.org/10.1016/j.fuel.2012.09.020. [CrossRef] [Google Scholar]
- Kadian A.K., Khan M., Sharma R.P. (2022) Performance enhancement and emissions mitigation of DI-CI engine fuelled with ternary blends of jatropha biodiesel-diesel-heptanol, Mater. Sci. Energy Technol. 5, 145–154. https://doi.org/10.1016/j.mset.2022.01.002. [Google Scholar]
- Zapata-Mina J., Restrepo A., Romero C., Quintero H. (2020) Exergy analysis of a diesel engine converted to spark ignition operating with diesel, ethanol, and gasoline/ethanol blends, Sustain. Energy Technol. Assess. 42, 100803. https://doi.org/10.1016/j.seta.2020.100803. [Google Scholar]
- Bhurat S.S., Pasupuleti S.R., Kunwer R., Gugulothu S.K., Joshi S.K. (2022) Effect of ethanol-diesel blend on compression ignition engine: A mini review, Mater. Today Proc. 69, 2, 459–462. https://doi.org/10.1016/j.matpr.2022.09.139. [CrossRef] [Google Scholar]
- Zhen X., Wang Y. (2015) An overview of methanol as an internal combustion engine fuel, Renew. Sust. Energy Rev. 52, 477–493. https://doi.org/10.1016/j.rser.2015.07.083. [CrossRef] [Google Scholar]
- Yilmaz N., Atmanli A. (2017) Experimental assessment of a diesel engine fueled with diesel-biodiesel-1-pentanol blends, Fuel 191, 190–197. https://doi.org/10.1016/j.fuel.2016.11.065. [CrossRef] [Google Scholar]
- Yesilyurt M.K. (2020) A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol, Fuel 275, 117893. https://doi.org/10.1016/j.fuel.2020.117893. [CrossRef] [Google Scholar]
- Manesh M.K., Navid P., Baghestani M., Abadi S.K., Rosen M.A., Blanco A.M., Amidpour M. (2014) Exergoeconomic and exergoenvironmental evaluation of the coupling of a gas fired steam power plant with a total site utility system, Energy Convers. Manag. 77, 469–483. https://doi.org/10.1016/j.enconman.2013.09.053. [CrossRef] [Google Scholar]
- Ding P., Yuan Z., Shen H., Qi H., Yuan Y., Wang X., Sobhani B. (2020) Exergoeconomic analysis and optimization of a hybrid Kalina and humidification-dehumidification system for waste heat recovery of low-temperature Diesel engine, Desalination 496, 114725. https://doi.org/10.1016/j.desal.2020.114725. [CrossRef] [Google Scholar]
- Shelar M., Kulkarni G.N. (2016) Thermodynamic and economic analysis of diesel engine based trigeneration systems for an Indian hotel, Sustain. Energy Technol. Assess. 13, 60–67. https://doi.org/10.1016/j.seta.2015.11.008. [Google Scholar]
- Mao Y., Zhang L., Wan L., Stanford R.J. (2022) Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine, Energy 240, 122615. https://doi.org/10.1016/j.energy.2021.122615. [CrossRef] [Google Scholar]
- Çetin O., Sogut M.Z. (2021) A new strategic approach of energy management onboard ships supported by exergy and economic criteria: A case study of a cargo ship, Ocean Eng. 219, 108137. https://doi.org/10.1016/j.oceaneng.2020.108137. [CrossRef] [Google Scholar]
- Cavalcanti E.J. (2021) Energy, exergy and exergoenvironmental analyses on gas-diesel fuel marine engine used for trigeneration system, Appl. Therm. Eng. 184, 116211. https://doi.org/10.1016/j.applthermaleng.2020.116211. [CrossRef] [Google Scholar]
- Krishnamoorthi M., Sreedhara S., Duvvuri P.P. (2020) Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends, Appl. Energy 263, 114643. https://doi.org/10.1016/j.apenergy.2020.114643. [CrossRef] [Google Scholar]
- Hosseinzadeh-Bandbafha H., Rafiee S., Mohammadi P., Ghobadian B., Lam S.S., Tabatabaei M., Aghbashlo M. (2021) Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends, Energy Convers. Manag. 241, 114300. https://doi.org/10.1016/j.enconman.2021.114300. [CrossRef] [Google Scholar]
- Zhu S., Ma Z., Zhang K., Deng K. (2020) Energy and exergy analysis of a novel steam injected turbocompounding system applied on the marine two-stroke diesel engine, Energy Convers. Manag. 221, 113207. https://doi.org/10.1016/j.enconman.2020.113207. [CrossRef] [Google Scholar]
- Vandani A.M.K., Joda F., Boozarjomehry R.B. (2016) Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants, Energy Convers. Manag. 109, 103–112. https://doi.org/10.1016/j.enconman.2015.11.048. [CrossRef] [Google Scholar]
- Nabi M.N., Rasul M.G., Arefin M.A., Akram M.W., Islam M.T., Chowdhury M.W. (2021) Investigation of major factors that cause diesel NOx formation and assessment of energy and exergy parameters using e-diesel blends, Fuel 292, 120298. https://doi.org/10.1016/j.fuel.2021.120298. [CrossRef] [Google Scholar]
- Khoobbakht G., Akram A., Karimi M., Najafi G. (2016) Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine, Appl. Therm. Eng. 99, 720–729. https://doi.org/10.1016/j.applthermaleng.2016.01.022. [CrossRef] [Google Scholar]
- Paul A., Panua R., Debroy D. (2017) An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by Diesel-ethanol-biodiesel blends, Energy 141, 839–852. https://doi.org/10.1016/j.energy.2017.09.137. [CrossRef] [Google Scholar]
- da Costa Y.J.R., de Lima A.G.B., Bezerra Filho C.R., de Araujo Lima L. (2012) Energetic and exergetic analyses of a dual-fuel diesel engine, Renew. Sust. Energy Rev. 16, 7, 4651–4660. https://doi.org/10.1016/j.rser.2012.04.013. [CrossRef] [Google Scholar]
- Taghavifar H., Nemati A., Walther J.H. (2019) Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine, Energy 187, 115951. https://doi.org/10.1016/j.energy.2019.115951. [CrossRef] [Google Scholar]
- Cavalcanti E.J., Carvalho M., Ochoa A.A. (2019) Exergoeconomic and exergoenvironmental comparison of diesel-biodiesel blends in a direct injection engine at variable loads, Energy Convers. Manag. 183, 450–461. https://doi.org/10.1016/j.enconman.2018.12.113. [CrossRef] [Google Scholar]
- Aghbashlo M., Tabatabaei M., Khalife E., Shojaei T.R., Dadak A. (2018) Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide, Energy 149, 967–978. https://doi.org/10.1016/j.energy.2018.02.082. [CrossRef] [Google Scholar]
- Suresh S., Sinha D., Murugavelh S. (2016) Biodiesel production from waste cotton seed oil: Engine performance and emission characteristics, Biofuels 7, 6, 689–698. https://doi.org/10.1080/17597269.2016.1192442. [CrossRef] [Google Scholar]
- Atabani A.E., Mahlia T.M.I., Masjuki H.H., Badruddin I.A., Yussof H.W., Chong W.T., Lee K.T. (2013) A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending, Energy 58, 296–304. https://doi.org/10.1016/j.energy.2013.05.040. [CrossRef] [Google Scholar]
- Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H., Mekhilef S. (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renew. Sust. Energy Rev. 16, 4, 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003. [CrossRef] [Google Scholar]
- Çengelci E., Bayrakçeken H., Aksoy F. (2011) Hayvansal ve bitkisel yağlardan elde edilen biyodizelin dizel yakıtı ile karşılaştırılması, Electr. J. Veh. Technol. 3, 1, 41–53. (in Turkish) [Google Scholar]
- Eliçin A.K., Gezici M., Erdoğan D. (2011) Determination of using possibilities of some oil esters as a fuel in a small internal combustion engine, in: 11th International Congress on Mechanization and Energy in Agriculture, Istanbul, Turkey, 21–23 September, pp. 608–613. [Google Scholar]
- Imdadul H.K., Masjuki H.H., Kalam M.A., Zulkifli N.W.M., Alabdulkarem A., Rashed M.M., Teoh Y.H., How H.G. (2016) Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine, Energy Convers. Manag. 111, 174–185. https://doi.org/10.1016/j.enconman.2015.12.066. [CrossRef] [Google Scholar]
- Zhu L., Xiao Y., Cheung C.S., Guan C., Huang Z. (2016) Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel, Appl. Therm. Eng. 102, 73–79. https://doi.org/10.1016/j.applthermaleng.2016.03.145. [CrossRef] [Google Scholar]
- Yesilyurt M.K., Cesur C. (2022) A statistical optimization attempt by applying the Taguchi technique for the optimum transesterification process parameters in the production of biodiesel from Papaver somniferum L. seed oil, Fuel 329, 125406. https://doi.org/10.1016/j.fuel.2022.125406. [CrossRef] [Google Scholar]
- Krishna S.M., Salam P.A., Tongroon M., Chollacoop N. (2019) Performance and emission assessment of optimally blended biodiesel-diesel-ethanol in diesel engine generator, Appl. Therm. Eng. 155, 525–533. https://doi.org/10.1016/j.applthermaleng.2019.04.012. [CrossRef] [Google Scholar]
- Elumalai P.V., Dash S.K., Parthasarathy M., Dhineshbabu N.R., Balasubramanian D., Cao D.N., Truong T.H., Le A.T., Hoang A.T. (2022) Combustion and emission behaviors of dual-fuel premixed charge compression ignition engine powered with n-pentanol and blend of diesel/waste tire oil included nanoparticles, Fuel 324, 124603. https://doi.org/10.1016/j.fuel.2022.124603. [CrossRef] [Google Scholar]
- Ganesan N., Le T.H., Ekambaram P., Balasubramanian D., Hoang A.T. (2022) Experimental assessment on performance and combustion behaviors of reactivity-controlled compression ignition engine operated by n-pentanol and cottonseed biodiesel, J. Clean. Prod. 330, 129781. https://doi.org/10.1016/j.jclepro.2021.129781. [CrossRef] [Google Scholar]
- Yesilyurt M.K., Eryilmaz T., Arslan M. (2018) A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends, Energy 165, 1332–1351. https://doi.org/10.1016/j.energy.2018.10.100. [CrossRef] [Google Scholar]
- Ashok B., Jeevanantham A.K., Nanthagopal K., Saravanan B., Kumar M.S., Johny A., Abubakar S. (2019) An experimental analysis on the effect of n-pentanol-Calophyllum Inophyllum Biodiesel binary blends in CI engine characteristcis, Energy 173, 290–305. https://doi.org/10.1016/j.energy.2019.02.092. [CrossRef] [Google Scholar]
- Dincer I., Cengel Y.A. (2001) Energy, entropy and exergy concepts and their roles in thermal engineering, Entropy 3, 3, 116–149. https://doi.org/10.3390/e3030116. [CrossRef] [Google Scholar]
- Sarıkoç S., Örs İ., Ünalan S. (2020) An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends, Fuel 268, 117321. https://doi.org/10.1016/j.fuel.2020.117321. [CrossRef] [Google Scholar]
- Şanli B.G., Uludamar E., Özcanli M. (2019) Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines, Fuel 258, 116116. https://doi.org/10.1016/j.fuel.2019.116116. [CrossRef] [Google Scholar]
- Yaman H. (2022) Investigation of the effect of compression ratio on the energetic and exergetic performance of a CI engine operating with safflower oil methyl ester, Process Saf. Environ. Prot. 158, 607–624. https://doi.org/10.1016/j.psep.2021.12.014. [CrossRef] [Google Scholar]
- Aghbashlo M., Tabatabaei M., Mohammadi P., Pourvosoughi N., Nikbakht A.M., Goli S.A.H. (2015) Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive, Energy Convers. Manag. 105, 328–337. https://doi.org/10.1016/j.enconman.2015.07.075. [CrossRef] [Google Scholar]
- Panigrahi N., Mohanty M.K., Mishra S.R., Mohanty R.C. (2014) Performance, emission, energy, and exergy analysis of a CI engine using mahua biodiesel blends with diesel, Int. Sch. Res. Notices 2014, 207465. https://doi.org/10.1155/2014/207465. [Google Scholar]
- Tat M.E. (2011) Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel, Fuel Process. Technol. 92, 7, 1311–1321. https://doi.org/10.1016/j.fuproc.2011.02.006. [CrossRef] [Google Scholar]
- Chaudhary V., Gakkhar R. (2020) Exergy based performance comparison of DI diesel engine fuelled with WCO15 and NEEM15 biodiesel, Environ. Prog. Sustain. Energy 39, 3, e13363. https://doi.org/10.1002/ep.13363. [CrossRef] [Google Scholar]
- Sayin Kul B., Kahraman A. (2016) Energy and exergy analyses of a diesel engine fuelled with biodiesel-diesel blends containing 5% bioethanol, Entropy 18, 11, 387. https://doi.org/10.3390/e18110387. [CrossRef] [Google Scholar]
- Dincer I. (2000) Thermodynamics, exergy and environmental impact, Energy Sources 22, 8, 723–732. https://doi.org/10.1080/00908310050120272. [CrossRef] [Google Scholar]
- Canakci M., Hosoz M. (2006) Energy and exergy analyses of a diesel engine fuelled with various biodiesels, Energy Sources Part B 1, 4, 379–394. https://doi.org/10.1080/15567240500400796. [CrossRef] [Google Scholar]
- Ağbulut Ü. (2022) Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: A thermodynamic approach, Fuel Process. Technol. 225, 107060. https://doi.org/10.1016/j.fuproc.2021.107060. [CrossRef] [Google Scholar]
- Tiwari C., Verma T.N., Dwivedi G., Verma P. (2023) Energy-exergy analysis of diesel engine fueled with microalgae biodiesel-diesel blend, Appl. Sci. 13, 3, 1857. https://doi.org/10.3390/app13031857. [CrossRef] [Google Scholar]
- Caliskan H., Tat M.E., Hepbasli A. (2009) Performance assessment of an internal combustion engine at varying dead (reference) state temperatures, Appl. Therm. Eng. 29, 16, 3431–3436. https://doi.org/10.1016/j.applthermaleng.2009.05.021. [CrossRef] [Google Scholar]
- Rangasamy M., Duraisamy G., Govindan N. (2020) A comprehensive parametric, energy and exergy analysis for oxygenated biofuels based dual-fuel combustion in an automotive light duty diesel engine, Fuel 277, 118167. https://doi.org/10.1016/j.fuel.2020.118167. [CrossRef] [Google Scholar]
- Kavitha K.R., Jayaprabakar J., Prabhu A. (2022) Exergy and energy analyses on biodiesel–diesel-ethanol blends in a diesel engine, Int. J. Ambient Energy 43, 1, 778–782. https://doi.org/10.1080/01430750.2019.1670261. [CrossRef] [Google Scholar]
- Çalışkan H. (2020) Energy, exergy, thermoecologic, sustainability, thermoeconomic and exergoeconomic analyses of solar collectors, Eng. Mach. 61, 700, 228–240. https://doi.org/10.46399/muhendismakina.774277. (in Turkish) [Google Scholar]
- Sekmen P., Yılbaşı Z. (2011) Application of energy and exergy analyses to a CI engine using biodiesel fuel, Math. Comput. Appl. 16, 4, 797–808. https://doi.org/10.3390/mca16040797. [Google Scholar]
- Kaya C., Aydin Z., Kökkülünk G., Safa A. (2023) Exergetic and exergoeconomic analyzes of compressed natural gas as an alternative fuel for a diesel engine, Energy Sources Part A 45, 2, 3722–3741. https://doi.org/10.1080/15567036.2020.1811429. [CrossRef] [Google Scholar]
- Murugapoopathi S., Vasudevan D. (2019) Energy and exergy analysis on variable compression ratio multi-fuel engine, J. Therm. Anal. Calorim. 136, 255–266. https://doi.org/10.1007/s10973-018-7761-2. [CrossRef] [Google Scholar]
- Hoseinpour M., Sadrnia H., Tabasizadeh M., Ghobadian B. (2017) Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation, Energy 141, 2408–2420. https://doi.org/10.1016/j.energy.2017.11.131. [CrossRef] [Google Scholar]
- Reşitoğlu İ.A., Altinişik K., Keskin A. (2015) The pollutant emissions from diesel-engine vehicles and exhaust after treatment systems, Clean Technol. Environ. Policy 17, 15–27. https://doi.org/10.1007/s10098-014-0793-9. [CrossRef] [Google Scholar]
- Sekmen Y., Çınar C., Erduranlı P., Boran E. (2004) The ınvestigation of the effect of ınjection pressure and maximum fuel quantity on engine performance and smoke emissions in diesel engines, J. Polytech. 7, 4, 321–326. [Google Scholar]
- Açıkkalp E., Aras H., Hepbasli A. (2014) Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine, Appl. Therm. Eng. 67, 1–2, 388–395. https://doi.org/10.1016/j.applthermaleng.2014.03.005. [CrossRef] [Google Scholar]
- Yildirim U., Gungor A. (2012) An application of exergoeconomic analysis for a CHP system, Int. J. Electr. Power Energy Syst. 42, 1, 250–256. https://doi.org/10.1016/j.ijepes.2012.03.040. [CrossRef] [Google Scholar]
- Uysal C., Ağbulut Ü., Elibol E., Demirci T., Karagoz M., Saridemir S. (2022) Exergetic, exergoeconomic, and sustainability analyses of diesel–biodiesel fuel blends including synthesized graphene oxide nanoparticles, Fuel 327, 125167. https://doi.org/10.1016/j.fuel.2022.125167. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.