Open Access
Numéro |
Sci. Tech. Energ. Transition
Volume 78, 2023
|
|
---|---|---|
Numéro d'article | 39 | |
Nombre de pages | 18 | |
DOI | https://doi.org/10.2516/stet/2023025 | |
Publié en ligne | 22 décembre 2023 |
- Liu Y., Hu C., Makoto S., Shigeo Y., Hidetsugu I., Masashi K. (2021) Motion response characteristics of a Kyushu-University semi-submersible floating wind turbine with trussed slender structures: experiment vs. numerical simulation. Ocean Eng. 232. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2021.109078. [Google Scholar]
- Aryai V., Abbassi R., Abdussamie N., Salehi F., Garaniya V., Asadnia M., Baksh A.-A., Penesis I., Karampour H., Draper S., Magee A., Keng A.K., Shearer C., Sivandran S., Yew L.K., Cook D., Underwood M., Martini A., Heasman K., Abrahams J., Wang C.-M. (2021) Reliability of multi-purpose offshore-facilities: present status and future direction in Australia, Process. Saf. Environ. Prot. 148, 437–461. https://doi.org/10.1016/j.psep.2020.10.016. [CrossRef] [Google Scholar]
- Laura C., Elson M., Guedes Soares C. (2016) Cost assessment methodology for combined wind and wave floating offshore renewable energy systems, Renewable Energy 97, 866–80. ISSN 0960-1481. https://doi.org/10.1016/j.renene.2016.06.016. [CrossRef] [Google Scholar]
- Robin C., Emmanuel A., Joseph A. (2021) A fleet based surplus production model that accounts for increases in fishing power with application to two West African pelagic stocks, Fish. Res. 243. https://doi.org/10.1016/j.fishres.2021.106048. [Google Scholar]
- Zheng L., Wang S., Cui M. (2022) Modeling and dynamic response analysis of a submersible floating offshore wind turbine integrated with aquaculture cage, Ocean Engineering 263, ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2022.112338. [Google Scholar]
- Aquafarms (2020) Hex Box. Available at http://www.oceanaquafarms.com/. [Google Scholar]
- Papandroulakis N., Papaioannou D., Divanach P. (2002) An automated feeding system for intensive hatcheries. Aquac. Eng. 26, 1, 13–26. ISSN 0144-8609. https://doi.org/10.1016/S0144-8609(01)00091-7. [CrossRef] [Google Scholar]
- Zheng X., Zheng H., Lei Y., Li Y., Li W. (2020) An offshore floating wind–solar–aquaculture system: concept design and extreme response in survival conditions, Energies 13, 3, 604–1. https://doi.org/10.3390/en13030604. [CrossRef] [Google Scholar]
- Zhang L., Zhang T., Zhang K. (2023) Research on power fluctuation strategy of hybrid energy storage to suppress wind-photovoltaic hybrid power system, Energy Reports 10, 3166–3173. ISSN 2352-4847. https://doi.org/10.1016/j.egyr.2023.09.176. [CrossRef] [Google Scholar]
- Zhang Y., Song Y., Shen C., Chen N. (2023) Aerodynamic and structural analysis for blades of a 15MW floating offshore wind turbine. Ocean Eng. 287, 1, 115785. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2023.115785. [CrossRef] [Google Scholar]
- Wayman E., Sclavounos P., Butterfield S., Jonkman J., Musial W. (2006) Coupled dynamic modeling of floating wind turbine systems, in:2006 Offshore Technology Conference, 1–4 May 2006, Houston, TX, USA. [Google Scholar]
- Wayman E.N. (2006) Coupled dynamics and economic analysis of floating wind turbine systems. Dissertation, Massachusetts Institute of Technology, Massachusetts, USA. [Google Scholar]
- Ju G., Sweetman B., Tang S.R. (2022) Multiaxial fatigue assessment of floating offshore wind turbine blades operating on compliant floating platforms. Ocean Eng. 261, 111921. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2022.111921. [CrossRef] [Google Scholar]
- Sweetman B., Wang L. (2012) Floating offshore wind turbine dynamics: large-angle motions in euler-space, J. Offshore Mech. Arct. Eng. 134, 1903–1911. [CrossRef] [Google Scholar]
- Wang L., Sweetman B. (2012) Simulation of large- amplitude motion of floating wind turbines using conservation of momentum, Ocean Eng. 42, 155–164. [CrossRef] [Google Scholar]
- Nielsen F.G., Hanson T.D., Skaare B. (2006) Integrated dynamic analysis of floating offshor wind turbines, in: Proceedings of OMAE2006 25th International Conference on Offshore Mechanics and Arctic Engineering, 4–9 June 2006. [Google Scholar]
- Larsen T.J., Hanson T.D. (2007) A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, J Phys Conf Ser 75, 012073. [CrossRef] [Google Scholar]
- Karimirad M., Moan T. (2010) Extreme structural dynamic response of a SPAR type wind turbine, Trans Mech Eng. 17, 2, 146–156. [Google Scholar]
- Matha D., Fischer T., Kuhn M., Jonkman J. (2009) Model development and loads analysis of a wind turbine on a floating offshore tension leg platform, in: 2009 European Offshore Wind Conference and Exhibition, September, 2009, Stockholm, Sweden. [Google Scholar]
- Adam F., Myland T., Dahlhaus F., Großmann J. (2014) Scale tests of the GICON-TLP for wind turbines, in: Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 9A: Ocean Renewable Energy, San Francisco, California, USA, June 8–13, 2014. V09AT09A011. ASME. https://doi.org/10.1115/OMAE2014-23216. [Google Scholar]
- Uchida T., Gagnon Y. (2022) Effects of continuously changing inlet wind direction on near-to-far wake characteristics behind wind turbines over flat terrain, J. Wind Eng. Ind. Aerodyn. 220, 104869. https://doi.org/10.1016/j.jweia.2021.104869. [CrossRef] [Google Scholar]
- Tian L., Song Y., Xiao P., Zhao N., Shen W., Zhu C. (2022) A new three-dimensional analytical model for wind turbine wake turbulence intensity predictions. Renewable Energy 189, 762–776. ISSN 0960-1481. https://doi.org/10.1016/j.renene.2022.02.115. [CrossRef] [Google Scholar]
- Liu W., Shi J., Chen H., Liu H., Lin Z., Wang L. (2021) Lagrangian actuator model for wind turbine wake aerodynamics, Energy 232, 121074. https://doi.org/10.1016/j.energy.2021.121074. [CrossRef] [Google Scholar]
- Dong G., Li Z., Qin J., Yang X. (2022) Predictive capability of actuator disk models for wakes of different wind turbine designs, Renew. Energy 188, 269–281. https://doi.org/10.1016/j.renene.2022.02.034. [CrossRef] [Google Scholar]
- Lopes A.M.G., Vicente A.H.S.N., Sánchez O.H., Daus R., Koch H. (2022) Operation assessment of analytical wind turbine wake models. J. Wind Eng. Ind. Aerodyn. 220, 104840. ISSN 0167-6105. https://doi.org/10.1016/j.jweia.2021.104840. [CrossRef] [Google Scholar]
- Nakhchi M.E., Win Naung S., Rahmati M. (2022) A novel hybrid control strategy of wind turbine wakes in tandem configuration to improve power production, Energ. Convers. Manage. 260, 115575. https://doi.org/10.1016/j.enconman.2022.115575. [CrossRef] [Google Scholar]
- Jonkman J., Butterfield S., Musial W., Scott G. (2009) Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, Colorado, USA. [Google Scholar]
- Api D. (2005) Analysis of station keeping systems for floating structures, API RP 2SK, 3rd edn, American Petroleum Institute, Washington, DC, USA. [Google Scholar]
- Raffaella N., Micaela M., Massimiliano P., Laura P. (2023) Environmental cognitive load and spatial anxiety: What matters in navigation? J. Environ. Psychol. 88, 102032. ISSN 0272-4944. https://doi.org/10.1016/j.jenvp.2023.102032. [CrossRef] [Google Scholar]
- Kaplan J.O., Lai L. ARVE-Research/newspline: First official release. https://doi.org/10.5281/zenodo.5783076. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.