Open Access
Issue
Sci. Tech. Energ. Transition
Volume 78, 2023
Article Number 38
Number of page(s) 13
DOI https://doi.org/10.2516/stet/2023038
Published online 15 December 2023
  • Adler H.H., Kerr P.F. (1963) Infrared spectra, symmetry and structure relations of some carbonate minerals, Am. Mineral. 48, 7–8, 839–853. [Google Scholar]
  • Stern K.H., Weise E.L. (1969) High temperature properties and decomposition of inorganic salts, part 2. Carbonates, vol. 30, National Bureau of Standards, NSRDS-NSB, 27 p. [Google Scholar]
  • Pillot D., Deville E., Prinzhofer A. (2014) Identification and quantification of carbonate species using Rock-Eval pyrolysis, Oil Gas Sci. Technol. – Rev. IFP 69, 341–349. https://doi.org/10.2516/ogst/2012036. [CrossRef] [Google Scholar]
  • Pillot D., Deville E., Prinzhofer A. (2011) Méthode pour la caractérisation et la quantification rapides des carbonates d’un matériau solide, French Patent (INPI) : Brevet déposé à l’Institut National de la Propriété Industrielle le 18 mars 2011, référence n 11/00.841. [Google Scholar]
  • Lafargue E., Marquis F., Pillot D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies, Oil Gas Sci. Technol. – Rev. IFP 53, 421–437. https://doi.org/10.2516/ogst:1998036. [Google Scholar]
  • Behar F., Beaumont V., De B., Penteado H.L. (2001) Rock-Eval 6 technology: performances and developments, Oil Gas Sci. Technol. – Rev. IFP 56, 111–134. https://doi.org/10.2516/ogst:2001013. [CrossRef] [Google Scholar]
  • Lamoureux-Var V., Espitalié J., Pillot D., Bouton N., Garcia B., Antonas A., Aboussou A., Wattripont A., Ravelojaona H., Noirez S., Beaumont V. (2019) Rock-Eval 7S: technology and performance, in: 29th International Meeting on Organic Geochemistry (IMOG 2019), Gothenburg, Sweden. https://doi.org/10.3997/2214-4609.201902941. [Google Scholar]
  • Lamoureux-Var V., Bouton N., Espitalié J., Benoit Y. Chap. 2 principes et méthode, in: Baudin F. (ed), La méthode Rock-Eval®, principes et applications, ISTE-Wiley, pp. 13–30 (in press). [Google Scholar]
  • Wattripont A., Bouton N., Espitalie J., Antonas R., Constantinou G. (2018) Rock-Eval sulfur & Geoworks software, in: Conference Proceedings, First EAGE/IFPEN Conference on Sulfur Risk Management in Exploration and Production, p. cp-565-00003. https://doi.org/10.3997/2214-4609.201802756. [Google Scholar]
  • Lever T., Haines P., Rouquerol J., Charsley E.L., van Eckeren P., Burlett D.J. (2014) ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014), Pure Appl. Chem. 86, 4, 545–553. https://doi.org/10.1515/pac-2012-0609. [CrossRef] [Google Scholar]
  • Henriksen N., Hansen F. (2018) Theories of molecular reaction dynamics, the microscopic foundations of chemical kinetics, 2nd ed., Oxford University Press, ISBN 978-0-19-880501-4. [Google Scholar]
  • Roduit B. (2000) Computational aspects of kinetic analysis. Part E: The ICTAC kinetics project. Numerical techniques and kinetics of solid state processes, Thermochim. Acta 355, 171–180. https://doi.org/10.1016/S0040-6031(00)00447-0. [CrossRef] [Google Scholar]
  • ASTM E2890-21 (2021) Standard test method for determination of kinetic parameters and reaction order for thermally unstable materials by differential scanning calorimetry using the Kissinger and Farjas methods. https://doi.org/10.1520/E2890-21. [Google Scholar]
  • Webb T.L., Krüger J.E. (1970) Chapter 10 – carbonates, in: McKenzie R.C. (ed), Differential Thermal Analysis – 1. Fundamental Aspects, Academic Press, pp. 302–341. [Google Scholar]
  • Brown W.M., Mackenzie K.J.D., Gainsford G.J. (1984) Thermal decomposition of the basic copper carbonates malachite and azurite, Thermochim. Acta 75, 23–32. [CrossRef] [Google Scholar]
  • Baudin F., Disnar J.R., Aboussou A., Savignac F. (2015) Guidelines for Rock-Eval analysis of recent marine sediments, Org. Geochem. 86, 71–80. https://doi.org/10.1016/j.orggeochem.2015.06.009. [CrossRef] [Google Scholar]
  • Wattripont A., Baudin F., de Rafelis M., Deconinck J.F. (2019) Specifications for carbonate content quantification in recent marine sediments using Rock-Eval pyrolysis, J. Anal. Appl. Pyrolysis 140, 393–403. https://doi.org/10.1016/j.jaap.2019.04.019. [CrossRef] [Google Scholar]
  • Sebag D., Garcin Y., Adatte T., Deschamps P., Ménot G., Verrecchia E.P. (2018) Correction for the siderite effect on Rock-Eval parameters: application to the sediments of Lake Barombi (Southwest Cameroon), Org. Geochem. 123, 126–135. https://doi.org/10.1016/j.orggeochem.2018.05.010. [CrossRef] [Google Scholar]
  • Ordoñez L., Vogel H., Sebag D., Ariztegui D., Adatte T., Russell J.M., Kallmeyer J., Vuillemin A., Friese A., Crowe S.A., Bauer K.W., Simister R., Henny C., Nomosatryo S., The Towuti Drilling Project Scientific Team (2019) Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using end-member analysis, Org. Geochem. 134, 32–44. https://doi.org/10.1016/j.orggeochem.2019.05.002. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.