Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
Innovative Strategies and Technologies for Sustainable Renewable Energy and Low-Carbon Development
|
|
---|---|---|
Article Number | 38 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.2516/stet/2025018 | |
Published online | 03 June 2025 |
- Open source: https://about.bnef.com. [Google Scholar]
- Kissai M. (2022) Fundamentals on vehicle and tyre modelling, in: Lenzo B. (ed), Vehicle dynamics. CISM International Centre for Mechanical Sciences, vol. 603, Springer, Cham, pp. 1–59. https://doi.org/10.1007/978-3-030-75884-4_1. [CrossRef] [Google Scholar]
- Gillespie T.D. (2021) Fundamentals of vehicle dynamics, SAE International. ISBN: 1468601768; 9781468601763. [CrossRef] [Google Scholar]
- Wiegand B. (2016) Estimation of the rolling resistance of tires, SAE Technical Paper 2016-01-0445. ISSN:0148-7191. https://doi.org/10.4271/2016-01-0445. [Google Scholar]
- Palin R., Johnston V., Johnson S., D’Hooge A., Duncan B., Gargoloff J. (2012) The aerodynamic development of the Tesla Model S – part 1: overview, SAE Technical Paper 2012-01-0177. ISSN:0148-7191, https://doi.org/10.4271/2012-01-0177. [Google Scholar]
- Hayes J.G., Abas Goodarzi G. (2017) Electric powertrain: energy systems, power electronics and drives for hybrid, electric and fuel cell vehicles. ISBN: 978-1-119-06364-3, https://doi.org/10.1002/9781119063681.ch2. [Google Scholar]
- Naik S.G., Nabi S.M.M. (2024) A comparative analysis of energy consumption in conventional and electric vehicles, Int. J. Veh. Perform. 10, 2, 177–195. https://doi.org/10.1504/IJVP.2024.137691. [CrossRef] [Google Scholar]
- Istiak S.M., Hossain M.R., Tasmin N. (2024) A systematic approach to design electric vehicle powertrains: model-based simulation and real-world application. Int. J. Veh. Perform. 10, 3, 312–348. https://doi.org/10.1504/IJVP.2024.140014. [CrossRef] [Google Scholar]
- Mopidevi S., Dasari K.S., Bakshu S.A., Reddy B.S. (2022) Dynamic performance analysis & sizing of vehicle body & powertrain for 48V electric 2-wheeler system, in 2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS), Nagpur, India, 18–19 November, IEEE, pp. 9–14. https://doi.org/10.1109/ICETEMS56252.2022.10093293. [Google Scholar]
- Xu D., Liu X., Shan Y., Gao Q. (2023) Research on impact resistance of steel wheel considering vehicle effect, Int. J. Veh. Perform. 9, 1, 1–15. https://doi.org/10.1504/IJVP.2023.128065. [Google Scholar]
- Wang Y., Shan Y., Xu D., Liu X. (2024) Structural optimisation design of impact resistant composite wheel with compression/injection moulding hybrid structure, Int. J. Veh. Perform. 10, 1, 1–23. https://doi.org/10.1504/IJVP.2024.135449. [Google Scholar]
- Ydrefors L., Hjort M., Kharrazi S., Jerrelind J., Stensson Trigell A. (2021) Rolling resistance and its relation to operating conditions: a literature review, Proc. Inst. Mech. Eng. D: J. Automob. Eng 235, 12, 2931–2948. https://doi.org/10.1177/09544070211011089. [CrossRef] [Google Scholar]
- Levesque W., Bégin-Drolet A., Lépine J. (2023) Effects of pavement characteristics on rolling resistance of heavy vehicles: a literature review, Transp. Res. Rec. 2677, 6, 296–309. https://doi.org/10.1177/03611981221145125. [CrossRef] [Google Scholar]
- Xiuyu L., Al-Qadi I.L. (2022) Integrated vehicle-tire-pavement approach for determining pavement structure-induced rolling resistance under dynamic loading, Transp. Res. Rec. 2676, 5, 398–409. https://doi.org/10.1177/03611981211067797. [Google Scholar]
- Fakhr E.A., Spitas C. (2024) Finite element analysis of studded tyre performance on snow: a study of traction, Veh. Syst. Dyn. 62, 6, 1380–1400. https://doi.org/10.1080/00423114.2023.2232059. [CrossRef] [Google Scholar]
- Kustanto M.N. (2022) The effect of tread pattern tires on hard compound coefficient rolling resistance, J. Mech. Eng. Sci. Innov 2, 2, 55–63. https://doi.org/10.31284/j.jmesi.2022.v2i2.3058. [CrossRef] [Google Scholar]
- Cordoș N., Todoruț A., Iclodean C., Barabás I. (2020) Influence of the dynamic vehicle load on the power losses required to overcoming the rolling resistance, in: Dumitru I., Covaciu D., Racila L., Rosca A. (eds), The 30th SIAR International Congress of Automotive and Transport Engineering. SMAT 2019, Springer, Cham, pp. 195–202. https://doi.org/10.1007/978-3-030-32564-0_23. [CrossRef] [Google Scholar]
- Galati R., Pappalettera A., Mantriota G., Reina G. (2024) Rubber tracks and tyres: a detailed insight into force analysis during obstacle negotiation, Veh. Syst. Dyn. 1–18. https://doi.org/10.1080/00423114.2024.2366528. [Google Scholar]
- Varadarajoo P.K., Ishak I.A., Baharol Maji D.S., Mohd Maruai N., Khalid A., Mohamed N. (2022) Aerodynamic analysis on the effects of frontal deflector on a truck by using Ansys software, Int. J. Integr. Eng. 14, 6, 77–87. https://doi.org/10.30880/ijie.2022.14.06.008. [CrossRef] [Google Scholar]
- Kambiz S., Ortega J.M. (2021) Aerodynamic integration produces a vehicle shape with a negative drag coefficient, Proc. Natl. Acad. Sci. USA 118, 27, 2106406118. https://doi.org/10.1073/PNAS.2106406118. [CrossRef] [Google Scholar]
- Ma X. (2022) Aerodynamic analysis of a car based on computational fluid dynamics and machine learning, in: Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 8: Fluids Engineering; Heat Transfer and Thermal Engineering, Columbus, Ohio, USA, October 30–November 3, ASME, p. V008T10A010. https://doi.org/10.1115/IMECE2022-96817. [Google Scholar]
- Yuan Z., Xiang W., Zhang H., Zhao Z. (2024) Optimisation study of aerodynamic drag based on flow field topology in box-type trucks, Int. J. Veh. Perform. 10, 1, 96–118. https://doi.org/10.1504/IJVP.2024.135455. [CrossRef] [Google Scholar]
- Munir F.A., Fauzi M.N., Jumaidin R. (2022) Numerical study of the effects of vehicle arrangement on aerodynamics resistance, J. Adv. Res. Fluid Mech. Therm. Sci. 98, 1, 67–72. https://doi.org/10.37934/arfmts.98.1.6772. [CrossRef] [Google Scholar]
- Gerber J.-M., Joubert J.W. (2022) Impact of road grade on the risk profile of driver behavior, Transp. Res. Rec. 2677, 2, 235–245. https://doi.org/10.1177/03611981221089939. [Google Scholar]
- Liu H., Rodgers M.O., Guensler R. (2019) Impact of road grade on vehicle speed-acceleration distribution, emissions and dispersion modeling on freeways, Transp. Res. D: Transp. Environ. 69, 107–122. https://doi.org/10.1016/J.TRD.2019.01.028. [CrossRef] [Google Scholar]
- Kumari S., Ghosh S., Hota A.R., Mukhopadhyay S. (2023) Energy consumption of electric vehicles: effect of lateral dynamics, in: 2023 IEEE 97th (VTC2023-Spring), Florence, Italy, 20–23 June IEEE, pp. 1–5. https://doi.org/10.1109/VTC2023-Spring57618.2023.10200325. [Google Scholar]
- Delaney J.A., McKay B.A., Radcliffe J., Benton D.T., Samozino P., Morin J.B., Duthie G.M. (2022) Uphill sprinting load- and force-velocity profiling: assessment and potential applications, J Sports Sci. 40, 3, 281–287. https://doi.org/10.1080/02640414.2021.1992868. [CrossRef] [PubMed] [Google Scholar]
- Mateichyk V., Soltus A., Klimov E., Kostian N., Smieszek M., Kovbasenko S. (2023) Regularities of changes in the motion resistance of wheeled vehicles along a curvilinear trajectory, Machines 11, 5, 570–570. https://doi.org/10.3390/machines11050570. [CrossRef] [Google Scholar]
- Pardhi S., Deshmukh A., Ajrouche H., Modelling of detailed vehicle dynamics and quantitative impact of electric motor placement on regenerative braking, Int. J. Veh, Perform. 9, 1, 16–40. https://doi.org/10.1504/IJVP.2023.128033. [CrossRef] [Google Scholar]
- Subhani S.C.M., Rao D.V., Vijay Kumar N., GunaSekhar M. (2022) Modeling, aerodynamic and crash simulation on car using fluient, Int. J. Innov. Res. Eng. Manag. 9, 6, 114–118. https://doi.org/10.55524/ijirem.2022.9.6.20. [Google Scholar]
- Widner A., Tihanyi V., Tettamanti T. (2022) Framework for vehicle dynamics model validation, IEEE Access 10, 35422–35436. https://doi.org/10.1109/ACCESS.2022.3157904. [CrossRef] [Google Scholar]
- Open source: https://www.engineeringtoolbox.com. [Google Scholar]
- Open source: https://www.olaelectric.com/s1-pro. [Google Scholar]
- Open source: https://en.wikipedia.org/wiki/FTP-75. [Google Scholar]
- Yalavarthy U.R.S., Kumar N.B., Babu A.R.V., Narasipuram R.P., Padmanaban S. (2025) Digital twin technology in electric and self-navigating vehicles: readiness, convergence, and future directions, Energy Convers. Manage. X 26, 100949. https://doi.org/10.1016/j.ecmx.2025.100949. [Google Scholar]
- Narasipuram R.P., Pasha M.M., Tabassum S., Tandon A.S. (2025) The electric vehicle surge: effective solutions for charging challenges with advanced converter technologies, Energy Eng. 122, 2, 431–469. https://doi.org/10.32604/ee.2025.055134. [CrossRef] [Google Scholar]
- Zhou Z., Wang Y., Zhou G., Liu X., Wu M., Dai K. (2024) Vehicle lateral dynamics-inspired hybrid model using neural network for parameter identification and error characterization, IEEE Trans. Veh. Technol. 73, 11, 16173–16186. https://10.1109/TVT.2024.3416317. [CrossRef] [Google Scholar]
- Chen J., Yu C., Wang Y., Zhou Z., Liu Z. (2024) Hybrid modeling for vehicle lateral dynamics via AGRU with a dual-attention mechanism under limited data, Control Eng. Pract. 151, 106015. https://doi.org/10.1016/j.conengprac.2024.106015. [CrossRef] [Google Scholar]
- Huang Z., Zhou Y., Lin Y., Zhao Y. (2024) Resilience evaluation and enhancing for China’s electric vehicle supply chain in the presence of attacks: a complex network analysis approach, Comput. Ind. Eng. 195, 110416. https://doi.org/10.1016/j.cie.2024.110416. [CrossRef] [Google Scholar]
- Liu K., Jiao S., Nie G., Ma H., Gao B., Sun C., Xin D., Saha T.K., Wu G. (2024) On image transformation for partial discharge source identification in vehicle cable terminals of high-speed trains, High Voltage 9, 5, 1090–1100. https://doi.org/10.1049/hve2.12487. [CrossRef] [Google Scholar]
- Liu Y., Zhao Y. (2024) A blockchain-enabled framework for vehicular data sensing: enhancing information freshness, IEEE Trans. Veh. Technol. 73, 11, 17416–17429. https://10.1109/TVT.2024.3417689. [CrossRef] [Google Scholar]
- Liang J., Yang K., Tan C., Wang J., Yin G. (2025) Enhancing high-speed cruising performance of autonomous vehicles through integrated deep reinforcement learning framework, IEEE Trans. Intell. Transp. Syst. 26, 1, 835–848. https://10.1109/TITS.2024.3488519. [CrossRef] [Google Scholar]
- Zhang J., Hu Y., Li Q., Yin C. (2024) Mechanical performance simulation and optimal design of carbon fiber composite B-pillar, Model. Simul. Mater. Sci. Eng. 32, 6, 065022. https://10.1088/1361-651X/ad6202. [CrossRef] [Google Scholar]
- Fu Y., Dong M., Zhou L., Li C., Yu F.R., Cheng N. (2024) A distributed incentive mechanism to balance demand and communication overhead for multiple federated learning tasks in IoV, IEEE Internet Things J. 12, 10479–10492. https://doi.org/10.1109/JIOT.2024.3510561. [Google Scholar]
- Liu L., Li Z., Kang H., Xiao Y., Sun L., Zhao H., Ma Y. (2025) Review of surrogate model assisted multi-objective design optimization of electrical machines: New opportunities and challenges, Renew. Sustain. Energy Rev. 215, 115609. https://doi.org/10.1016/j.rser.2025.115609. [CrossRef] [Google Scholar]
- Liu X., Tan J., Long S. (2024) Multi-axis fatigue load spectrum editing for automotive components using generalized S-transform, Int. J. Fatigue 188, 108503. https://doi.org/10.1016/j.ijfatigue.2024.108503. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.