Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Article Number 6
Number of page(s) 8
DOI https://doi.org/10.2516/stet/2024106
Published online 06 January 2025
  • Zhuang C., Zhang B., Hu J., Li Q., Zeng R. (2016) Abnormal consumption pattern detection of power users based on unsupervised learning, Proc. CSEE 36, 2, 379–387. [Google Scholar]
  • Coma-Puig B., Carmona J., Gavalda R., Alcoverro S., Martin V. (2016) Fraud detection in energy consumption: a supervised approach, in: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE, pp. 120–129. [CrossRef] [Google Scholar]
  • Zhang R., Peng Z., Wu L., Yao B., Guan Y. (2017) Fault diagnosis from raw sensor data using deep neural networks considering temporal coherence, Sensors 17, 3, 549. [CrossRef] [PubMed] [Google Scholar]
  • Kou Y., Cui G. (2017) Machine learning-based models for fault detection in automatic meter reading systems, in: 2017 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), IEEE, pp. 684–689. [CrossRef] [Google Scholar]
  • Divina F., Gilson A., Goméz-Vela F., García Torres M., Torres J. F. (2018) Stacking ensemble learning for short-term electricity consumption forecasting, Energies 11, 4, 949. [CrossRef] [Google Scholar]
  • Liu M., Chen W., et al. (2019) Research on a network traffic anomaly detection model based on K-means algorithm, Wirel. Internet Technol. 16, 18, 25–27. [Google Scholar]
  • Wu R., Zhang A. (2020) Power data anomaly detection algorithm based on improved K-means, Journal of East China Normal University (Natural Science Edition) 2020, 4, 79–87. [Google Scholar]
  • Ren B., Zheng Y., Wang Y., Sheng S., Li J., Zhang H., Zheng C. (2021) Research on fault location of secondary equipment of intelligent substation based on deep learning, Power Grid Technol. 45, 2, 713–721. [Google Scholar]
  • Li X., Qi Z., Kang Z., Su Z. (2018) Power operation and maintenance data cleaning method based on isolated forest algorithm and BP neural network algorithm, Electr. Appl. 37, 16, 72–78. [Google Scholar]
  • Thirusubramanian G. (2021) Machine learning-driven AI for financial fraud detection in IoT environments, Int. J. Hum. Resour. Manage. Organ. Behav. 9, 4, 9–25. [Google Scholar]
  • Naresh K.R.P. (2023) Forecasting e-commerce trends: utilizing linear regression, polynomial regression, random forest, and gradient boosting for accurate sales and demand prediction, Int. J. Hum. Resour. Manage. Organ. Behav. 11, 3, 11–26. [Google Scholar]
  • Naresh K.R.P. (2021) Optimized hybrid machine learning framework for enhanced financial fraud detection using e-commerce big data, Int. J. Manage. Res. Rev. 11, 2, 18–35. [Google Scholar]
  • Mokhtari S., Abbaspour A., Yen K. K., Sargolzaei A. (2021) A machine learning approach for anomaly detection in industrial control systems based on measurement data, Electronics 10, 4, 407. [CrossRef] [Google Scholar]
  • Takiddin A., Ismail M., Zafar U., Serpedin E. (2022) Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids, IEEE Syst. J. 16, 3, 4106–4117. [CrossRef] [Google Scholar]
  • Singh V. K., Govindarasu M. (2021) A cyber-physical anomaly detection for wide-area protection using machine learning, IEEE Trans. Smart Grid 12, 4, 3514–3526. [CrossRef] [Google Scholar]
  • Copiaco A., Himeur Y., Amira A., Mansoor W., Fadli F., Atalla S., Sohail S. S. (2023) An innovative deep anomaly detection of building energy consumption using energy time-series images, Eng. Appl. Artif. Intell. 119, 105775. [CrossRef] [Google Scholar]
  • Choi K., Yi J., Park C., Yoon S. (2021) Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines, IEEE Access 9, 120043–120065. [CrossRef] [Google Scholar]
  • Siniosoglou I., Radoglou-Grammatikis P., Efstathopoulos G., Fouliras P., Sarigiannidis P. (2021) A unified deep learning anomaly detection and classification approach for smart grid environments, IEEE Trans. Netw. Serv. Manage. 18, 2, 1137–1151. [CrossRef] [Google Scholar]
  • Sial A., Singh A., Mahanti A. (2021) Detecting anomalous energy consumption using contextual analysis of smart meter data, Wirel. Netw. 27, 4275–4292. [CrossRef] [Google Scholar]
  • Himeur Y., Alsalemi A., Bensaali F., Amira A. (2020) A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks, Cogn. Comput. 12, 6, 1381–1401. [CrossRef] [Google Scholar]
  • Castellani A., Schmitt S., Squartini S. (2020) Real-world anomaly detection by using digital twin systems and weakly supervised learning, IEEE Trans. Ind. Inform. 17, 7, 4733–4742. [Google Scholar]
  • Sater R. A., Hamza A. B. (2021) A federated learning approach to anomaly detection in smart buildings, ACM Trans. Internet Things 2, 4, 1–23. [CrossRef] [Google Scholar]
  • Yamauchi M., Ohsita Y., Murata M. (2020) Anomaly detection in smart home operation from user behaviors and home conditions, IEEE Trans. Consum. Electron. 66, 2, 183–192. [CrossRef] [Google Scholar]
  • Chen L., Lao K. W., Ma Y., Zhang Z. (2022) Error modeling and anomaly detection of smart electricity meter using TSVD+ L method, IEEE Trans. Instrum. Meas. 71, 1–14. [CrossRef] [Google Scholar]
  • Katyare P., Joshi S. S. (2022) Electricity anomalies detection and automation in smart meter system, in: Senjyu T., Mahalle T., Perumal T., Joshi A. (eds), IOT with Smart Systems. Smart Innovation, Systems and Technologies, vol. 251, Springer, Singapore, pp. 453–462. [CrossRef] [Google Scholar]
  • Kardi M., AlSkaif T., Tekinerdogan B., Catalão JPS (2021) Anomaly detection in electricity consumption data using deep learning, in: 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I &CPS Europe), IEEE, pp. 1–6. [Google Scholar]
  • Carratù M., Gallo V., Iacono S. D., Sommella P., Bartolini A., Grasso F., Ciani L., Patrizi G. (2023) A novel methodology for unsupervised anomaly detection in industrial electrical systems, IEEE Trans. Instrum. Meas. 17, 7, 4733–4742. [Google Scholar]
  • Li S., Pandey A., Hooi B., Faloutsos C., Pileggi L. (2021) Dynamic graph-based anomaly detection in the electrical grid, IEEE Trans. Power Syst. 37, 5, 3408–3422. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.