Open Access
Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Article Number 10
Number of page(s) 14
DOI https://doi.org/10.2516/stet/2024108
Published online 06 January 2025
  • Manzoor A., Akram W., Judge M.A., Khan N., Khattak H.A. (2024) Efficient economic energy scheduling in smart cities using distributed energy resources, Sci. Technol. Energy Trans. 79, 29. [Google Scholar]
  • Majid S.H., Alkhayer A.G., Askar S., Rajiv A., Singh S., Kaur S., Singh A., Hussein L., Romaina Y.S., Perz R. (2024) Modelling cost-effective of electric vehicles and demand response in smart electrical microgrids, Sci. Technol. Energy Trans. 79, 63. [Google Scholar]
  • Ahmed K., Seyedmahmoudian M., Mekhilef S., Mubarak N., Stojcevski A. (2020) A review on primary and secondary controls of inverter-interfaced microgrid, J. Mod. Power Syst. Clean Energy 9, 5, 969–985. [Google Scholar]
  • Olivares D.E., Mehrizi-Sani A., Etemadi A.H., Cañizares C.A., Iravani R., Kazerani M., Hajimiragha A.H., Gomis-Bellmunt O., Saeedifard M., Palma-Behnke R., et al. (2014) Trends in microgrid control, IEEE Trans. Smart Grid 5, 4, 1905–1919. [CrossRef] [Google Scholar]
  • Guerrero J.M., Chandorkar M., Lee T.L., Loh P.C. (2012) Advanced control architectures for intelligent microgrids – Part I: Decentralized and hierarchical control, IEEE Trans. Ind. Electron. 60, 4, 1254–1262. [Google Scholar]
  • Guerrero J.M., Loh P.C., Lee T.L., Chandorkar M. (2012) Advanced control architectures for intelligent microgrids – part II: Power quality, energy storage, and ac/dc microgrids, IEEE Trans. Ind. Electron. 60, 4, 1263–1270. [Google Scholar]
  • Chandorkar M.C., Divan D.M., Adapa R. (1993) Control of parallel connected inverters in standalone ac supply systems, IEEE Trans. Ind. Appl. 29, 1, 136–143. [CrossRef] [Google Scholar]
  • Pogaku N., Prodanovic M., Green T.C. (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid, IEEE Trans. Power Electron. 22, 2, 613–625. [CrossRef] [Google Scholar]
  • Dheer D.K., Gupta Y., Doolla S. (2019) A self-adjusting droop control strategy to improve reactive power sharing in islanded microgrid, IEEE Trans. Sustain. Energy 11, 3, 1624–1635. [Google Scholar]
  • Dheer D.K., Gupta Y., Doolla S. (2021) Decentralised inverter control for improved reactive power sharing and voltage profile in a microgrid, IET Gener. Transm. Distrib. 15, 7, 1227–1241. [CrossRef] [Google Scholar]
  • Singh P.K., Dheer D.K. (2023) Robust Volt-VAr control strategy for improvement in reactive power sharing in a droop based islanded microgrid, Arab. J. Sci. Eng. 48, 1, 15495–15508. [CrossRef] [Google Scholar]
  • Ling Y., Li Y., Yang Z., Xiang J. (2020) A dispatchable droop control method for distributed generators in islanded ac microgrids, IEEE Trans. Ind. Electron. 68, 9, 8356–8366. [Google Scholar]
  • Gupta Y., Chatterjee K., Doolla S. (2020) A simple control scheme for improving reactive power sharing in islanded microgrid, IEEE Trans. Power Systems 35, 4, 3158–3169. [CrossRef] [Google Scholar]
  • Aquib M., Parth N., Doolla S., Chandorkar M.C. (2023) An adaptive droop scheme for improving transient and steady-state power sharing among distributed generators in islanded microgrids, IEEE Trans. Ind. Appl. 59, 4, 5136–5148. [Google Scholar]
  • Liu B., Liu Z., Liu J., An R., Zheng H., Shi Y. (2019) An adaptive virtual impedance control scheme based on small-ac-signal injection for unbalanced and harmonic power sharing in islanded microgrids, IEEE Trans. Power Electron. 34, 12, 12333–12355. [CrossRef] [Google Scholar]
  • Minetti M., Rosini A., Denegri G.B., Bonfiglio A., Procopio R. (2021) An advanced droop control strategy for reactive power assessment in islanded microgrids. IEEE Trans. Power Systems 37, 4, 3014–3025. [Google Scholar]
  • Pham X.H.T. (2021) An improved controller for reactive power sharing in islanded microgrid, Elec. Eng. 103, 3, 1679–1689. [CrossRef] [Google Scholar]
  • Nookala S., Shiva C.K., Basetti V. (2024) Enhancing decentralized frequency regulation approach in mixed source of generation diversified with wind and PV integration deploying artificial gorilla troops algorithm, Sci. Technol. Energy Trans. 79, 52. [Google Scholar]
  • Gao Z. (2024) Study on frequency stability control strategies for microgrid based on hybrid renewable energy, Sci. Technol. Energy Trans. 79, 54. [Google Scholar]
  • Mousavi S.Y.M., Jalilian A., Savaghebi M., Guerrero J.M. (2018) Autonomous control of current-and voltage-controlled dg interface inverters for reactive power sharing and harmonics compensation in islanded microgrids, IEEE Trans. Power Electron. 33, 11, 9375–9386. [CrossRef] [Google Scholar]
  • He J., Li Y.W. (2011) Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation, IEEE Trans. Ind. Appl. 47, 6, 2525–2538. [CrossRef] [Google Scholar]
  • He J., Li Y.W. (2010) Analysis and design of interfacing inverter output virtual impedance in a low voltage microgrid, in: 2010 IEEE Energy Conversion Congress and Exposition, IEEE, pp. 2857–2864. [CrossRef] [Google Scholar]
  • Cao W., Han M., Zhang X., Xie W., Agundis-Tinajero G.D., Guerrero J.M. (2020) A novel power sharing scheme of controlling parallel-operated inverters in islanded microgrids’, IEEE J. Emerg. Sel. Top. Power Electron. 9, 5, 5732–5746. [Google Scholar]
  • Vijay A., Parth N., Doolla S., Chandorkar M.C. (2021) An adaptive virtual impedance control for improving power sharing among inverters in islanded ac microgrids, IEEE Trans. Smart Grid 12, 4, 2991–3003. [CrossRef] [Google Scholar]
  • Deng F., Li X., Zhang X., Mattavelli P. (2021) An iterative virtual impedance regulation strategy in islanded microgrids for enhanced balanced, unbalanced and harmonic current sharing, IEEE Trans. Sustain. Energy 13, 1, 514–526. [Google Scholar]
  • Khan I., Vijay A., Doolla S. (2023) Evaluating power sharing performance of distributed generators in microgrids with hybrid sources and mixed tie-lines, IEEE Trans. Ind. Appl. 59, 5, 5363–5375. [CrossRef] [Google Scholar]
  • Pournazarian B., Seyedalipour S.S., Lehtonen M., Taheri S., Pouresmaeil E. (2020) Virtual impedances optimization to enhance microgrid small-signal stability and reactive power sharing, IEEE Access 8, 139691–139705. [CrossRef] [Google Scholar]
  • Li Y.W., Kao C.N. (2009) An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid, IEEE Trans. Power Electron. 24, 12, 2977–2988. [CrossRef] [Google Scholar]
  • Mohammed N., Lashab A., Ciobotaru M., Guerrero J.M. (2022) Accurate reactive power sharing strategy for droop-based islanded ac microgrids, IEEE Trans. Ind. Electron. 70, 3, 2696–2707. [Google Scholar]
  • Guerrero J.M., De Vicuna L.G., Matas J., Castilla M., Miret J. (2005) Output impedance design of parallel-connected ups inverters with wireless load-sharing control, IEEE Trans. Ind. Electron. 52, 4, 1126–1135. [CrossRef] [Google Scholar]
  • He J., Li Y.W. (2012) An enhanced microgrid load demand sharing strategy, IEEE Trans. Power Electron. 27, 9, 3984–3995. [CrossRef] [Google Scholar]
  • Pham M.D., Lee H.H. (2020) Effective coordinated virtual impedance control for accurate power sharing in islanded microgrid, IEEE Trans. Ind. Electron. 68, 3, 2279–2288. [Google Scholar]
  • Hoang T.V., Lee H.H. (2020) Virtual impedance control scheme to compensate for voltage harmonics with accurate harmonic power sharing in islanded microgrids, IEEE J. Emerg. Sel. Top. Power Electron. 9, 2, 1682–1695. [Google Scholar]
  • Wong Y.C.C., Lim C.S., Cruden A., Rotaru M.D., Ray P.K. (2020) A consensus-based adaptive virtual output impedance control scheme for reactive power sharing in radial microgrids, IEEE Trans. Ind. Appl. 57, 1, 784–794. [Google Scholar]
  • Zhou J., Tsai M.J., Cheng P.T. (2019) Consensus-based cooperative droop control for accurate reactive power sharing in islanded ac microgrid, IEEE J. Emerg. Sel. Top. Power Electron. 8, 2, 1108–1116. [Google Scholar]
  • Duarte J., Velasco M., Mart P., Camacho A., Miret J., Alfaro C. (2022) Decoupled simultaneous complex power sharing and voltage regulation in islanded ac microgrids, IEEE Trans. Ind. Electron. 70, 4, 3888–3898. [Google Scholar]
  • Babayomi O., Li Y., Zhang Z. (2022) Distributed consensus-based reactive power sharing in microgrids: A predictive virtual capacitance control technique, Int. J. Electr. Power Energy Syst. 141, 108139. [CrossRef] [Google Scholar]
  • Qian H., Xu Q., Du P., Xia Y., Zhao J. (2020) Distributed control scheme for accurate power sharing and fixed frequency operation in islanded microgrids, IEEE Trans. Ind. Electron. 68, 12, 12229–12238. [Google Scholar]
  • Lu J., Zhao M., Golestan S., Dragicevic T., Pan X., Guerrero J.M. (2021) Distributed event-triggered control for reactive, unbalanced, and harmonic power sharing in islanded ac microgrids, IEEE Trans. Ind. Electron. 69, 2, 1548–1560. [Google Scholar]
  • Jasim A.M., Jasim B.H., Aymen F., Kotb H., Althobaiti A., et al. (2023) Consensus-based intelligent distributed secondary control for multiagent islanded microgrid, Int. Trans. Electr. Energy Syst. 2023, 6812351. [Google Scholar]
  • Han R., Meng L., Ferrari-Trecate G., Coelho E.A.A., Vasquez J.C., Guerrero J.M. (2017) Containment and consensus-based distributed coordination control to achieve bounded voltage and precise reactive power sharing in islanded ac microgrids, IEEE Trans. Ind. Appl. 53, 6, 5187–5199. [CrossRef] [MathSciNet] [Google Scholar]
  • Hou S., Chen J., Chen G. (2023) Distributed control strategy for voltage and frequency restoration and accurate reactive power-sharing for islanded microgrid, Energy Rep. 9, 742–751. [CrossRef] [Google Scholar]
  • Wan X., Wu J. (2022) Distributed hierarchical control for islanded microgrids based on adjustable power consensus, Electronics 11, 3, 324. [Google Scholar]
  • Kim S., Hyon S., Kim C. (2018) Distributed virtual negative-sequence impedance control for accurate imbalance power sharing in islanded microgrids, Sustain. Energy Grids Netw. 16, 28–36. [CrossRef] [Google Scholar]
  • Xu Y., Guo Q., Sun H., Fei Z. (2018) Distributed discrete robust secondary cooperative control for islanded microgrids, IEEE Trans. Smart Grid 10, 4, 3620–3629. [Google Scholar]
  • Mottaghizadeh M., Aminifar F., Amraee T., Sanaye-Pasand M. (2021) Distributed robust secondary control of islanded microgrids: Voltage, frequency, and power sharing, IEEE Trans. Power Delivery 36, 4, 2501–2509. [CrossRef] [Google Scholar]
  • Chen Y., Lao K.W., Qi D., Hui H., Yang S., Yan Y., Zheng Y. (2023) Distributed self-triggered control for frequency restoration and active power sharing in islanded microgrids, IEEE Trans. Ind. Informat. 19, 10, 10635–10646. [CrossRef] [Google Scholar]
  • Venkatesh B., Ranjan R., Gooi H. (2004) Optimal reconfiguration of radial distribution systems to maximize loadability, IEEE Trans. Power Systems 19, 1, 260–266. [Google Scholar]
  • Savier J., Das D. (2007) Impact of network reconfiguration on loss allocation of radial distribution systems, IEEE Trans. Power Delivery 22, 4, 2473–2480. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.