Issue
Sci. Tech. Energ. Transition
Volume 80, 2025
Emerging Advances in Hybrid Renewable Energy Systems and Integration
Article Number 8
Number of page(s) 17
DOI https://doi.org/10.2516/stet/2024096
Published online 06 January 2025
  • Zhao J., Zhou N. (2021) Impact of human health on economic growth under the constraint of environment pollution, Technol. Forecast. Soc. Change 169, 120828. [CrossRef] [Google Scholar]
  • Yuan X., Li H., Zhao J. (2020) Impact of environmental pollution on health – evidence from cities in China, Soc. Work Public Health 35, 413–430. [CrossRef] [PubMed] [Google Scholar]
  • Majeed Y., Khan M.U., Waseem M., Zahid U., Mahmood F., Majeed F.F., Sultan M., Raza A. (2023) Renewable energy as an alternative source for energy management in agriculture, Energy Rep. 10, 344–359. [CrossRef] [Google Scholar]
  • Loureiro S.M.C., Guerreiro J., Tussyadiah I.P. (2021) Artificial intelligence in business: state of the art and future research agenda, J. Bus. Res. 129, 911–926. [CrossRef] [Google Scholar]
  • Shaq (2024) AI Ready (2): Combat assessment – enterprise AI maturity evaluation model [Blog post], Retrieved from https://zhuanlan.zhihu.com/p/681183964 (in Chinese). [Google Scholar]
  • Yablonsky S.A. (2021) AI-driven platform enterprise maturity: from human led to machine governed, Kybernetes 50, 2753–2789. [CrossRef] [Google Scholar]
  • Micallef P., Gupta M. (2021) Artificial intelligence capability: conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance, Inf. Manag. 58, 103434. [CrossRef] [Google Scholar]
  • Cheng K., Jin Z., Wu G. (2024) Unveiling the role of artificial intelligence in influencing enterprise environmental performance: evidence from China, J. Clean. Prod. 440, 140934. [CrossRef] [Google Scholar]
  • Yao J.Q., Zhang K.P., Guo L.P., Feng X. (2024) How does artificial intelligence improve corporate production efficiency? – from the perspective of labor skill structure adjustment, Manag. World 40, 2, 101–116, 133, 117-122 (in Chinese). [Google Scholar]
  • Tang H., Xiao H., Wei Z. (2019) Research on the influencing factors and mechanism of production in carbon emission-dependent enterprises, Chin. J. Manag. 16, 12, 1841–1846 (in Chinese). [Google Scholar]
  • Li Y., Miao B. (2022) Review of research on the influencing factors of corporate carbon performance, Acc. Fin. Mon. 10, 63–69 (in Chinese). [Google Scholar]
  • Liu Q.C., Kong L.Q., An Z.Y. (2014) Analysis of energy-related carbon emission factors in China’s manufacturing industry, China Popul. Resour. Environ. 24, 2, 14–18 (in Chinese). [Google Scholar]
  • Xie L., Wang T., Zhang T. (2019) Factors affecting the intensity of industrial carbon emissions: empirical evidence from Chinese heterogeneous subindustries, Emerg. Mark. Financ. Tr. 55, 1357–1374. [CrossRef] [Google Scholar]
  • Pan T., Zhang J., Wang Y., Shang Y. (2024) The impact of environmental regulations on carbon emissions of Chinese enterprises and their resource heterogeneity, Sustainability 16, 3, 1058. [CrossRef] [Google Scholar]
  • Waheeb R.A. (2023) Sustainable ENERGY by using AI, SSRN Electron. J. [Google Scholar]
  • Zhao Q., Wang L., Stan S.E., Mirza N. (2024) Can artificial intelligence help accelerate the transition to renewable energy? Energy Econ. 134, 107584. [CrossRef] [Google Scholar]
  • Mittal A., Dumka L., Singh Kharka K.P., Soni M., Goyal H.R. (2024) Smart energy: artificial intelligence (AI) in charging and battery management systems, in: 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 11–12 March, IEEE, pp. 68–73. [Google Scholar]
  • Ahmad T., Zhang D., Huang C., Zhang H., Dai N., Song Y., Chen H. (2021) Artificial intelligence in sustainable energy industry: status quo, challenges and opportunities, J. Clean. Prod. 289, 125834. [CrossRef] [Google Scholar]
  • Chen P., Gao J., Ji Z., Liang H., Peng Y. (2022) Do artificial intelligence applications affect carbon emission performance? – Evidence from panel data analysis of Chinese cities, Energies 15, 15, 5730. [CrossRef] [Google Scholar]
  • Zakizadeh M., Zand M. (2024) AI-driven energy intelligence: revolutionizing the energy sector through smart energy solutions, in: 2024 10th International Conference on Web Research (ICWR), Tehran, Iran, Islamic Republic, 24–25 April, IEEE, pp. 355–363. [Google Scholar]
  • Zhong J., Zhong Y., Han M., Yang T., Zhang Q. (2023) The impact of AI on carbon emissions: evidence from 66 countries, Appl. Econ. 56, 2975–2989. [Google Scholar]
  • Fernando Y., Hor W.L. (2017) Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of Malaysian manufacturing firms, Res. Conserv. Recycl. 126, 62–73. [CrossRef] [Google Scholar]
  • Kushnarevych A. (2024) Researching the topic of AI data analysis in loyalty programs, in: Proceedings of the 23rd European Conference on Research Methodology for Business and Management Studies, Porto, Portugal, 4–5 July. https://doi.org/10.34190/ecrm.23.1.2401. [Google Scholar]
  • Chutcheva Y., Kuprianova L.M., Seregina A.A., Kukushkin S.N. (2022) Environmental management of companies in the oil and gas markets based on AI for sustainable development: An international review, Front. Environ. Sci. 10, 952102. [CrossRef] [Google Scholar]
  • Podder I., Fischl T., Bub U. (2023) Artificial intelligence applications for MEMS-based sensors and manufacturing process optimization, Telecom 4, 1, 165–197. [CrossRef] [Google Scholar]
  • Liu T., Yu Z. (2022) The relationship between open technological innovation, intellectual property rights capabilities, network strategy, and AI technology under the Internet of Things, Oper. Manag. Res. 15, 793–808. [CrossRef] [Google Scholar]
  • Yang G., Yang G., Yang W. (2023) Research on the influence of depth and breadth of equity reform on the performance of state owned enterprises based on dynamic panel data model, Fluct. Noise Lett. https://doi.org/10.1142/S0219477524400145. [Google Scholar]
  • Wang H., Liu J.Z., Zhang L.H. (2022) Carbon emissions and asset pricing: evidence from Chinese listed companies, J. Econ. 9, 2, 28–75. [Google Scholar]
  • Luo Y., Tian N., Wang D., Han W. (2023) Does digital transformation enhance firm’s ESG performance? Evidence from an emerging market, Emerg. Mark. Fin. Tr. 60, 825–854. [Google Scholar]
  • Loughran T., Mcdonald B. (v) When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks, J. Fin. 66, 35–65. [Google Scholar]
  • Abbaskhani H., Pakmaram A., Rezaei N., Sales J.B. (2024) Enhancing going concern prediction models: integrating text mining with data mining approaches, Iran. J. Acc. Auditing Finance 8, 3, 27–42. [Google Scholar]
  • Zhong T.-Y., Cheng Y.-M., Li J.-N. (2023) Digital transformation and labor investment efficiency: alleviating the under-investment or inhibiting the over-investment? Western Forum 2, 29–42 (in Chinese). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.