Open Access
Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.2516/stet/2024109 | |
Published online | 29 January 2025 |
- Andreasen A. (2021) Optimisation of carbon capture from flue gas from a Waste-to-Energy plant using surrogate modelling and global optimisation, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 76, 55. https://doi.org/10.2516/ogst/2021036. [CrossRef] [Google Scholar]
- Wang Q., Zhang D., Li Y., Li C., Tang H. (2024) Numerical simulation study of CO2 storage capacity in deep saline aquifers, Sci. Tech. Energ. Transition 79, 12. https://doi.org/10.2516/stet/2024005. [CrossRef] [Google Scholar]
- Tursunov O., Kustov L., Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. Rev. – IFP Energies Nouvelles 72, 30. https://doi.org/10.2516/ogst/2017027. [CrossRef] [Google Scholar]
- Wang P.-T., Wu X., Ge G., Wang X., Xu M., Wang F., Zhang Y., Wang H., Zheng Y. (2023) Evaluation of CO2 enhanced oil recovery and CO2 storage potential in oil reservoirs of petroliferous sedimentary basin, China, Sci. Tech. Energ. Transition 78, 3. https://doi.org/10.2516/stet/2022022. [CrossRef] [Google Scholar]
- Eldevik F., Graver B., Torbergsen L.E., Saugerud O.T. (2009) Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines, Energy Procedia 1, 1579–1585. https://doi.org/10.1016/j.egypro.2009.01.207. [CrossRef] [Google Scholar]
- Lu H., Ma X., Huang K., Fu L., Azimi M. (2020) Carbon dioxide transport via pipelines: a systematic review, J. Clean. Prod. 266, 121994. https://doi.org/10.1016/j.jclepro.2020.121994. [CrossRef] [Google Scholar]
- Witkowski A., Majkut M. (2012) The impact of CO2 compression systems on the compressor power required for a pulverized coal-fired power plant in post-combustion carbon dioxide sequestration, Arch. Mech. Eng. 59, 3, 343–360. https://doi.org/10.2478/v10180-012-0018-x. [CrossRef] [MathSciNet] [Google Scholar]
- Martynov S.B., Daud N.K., Mahgerefteh H., Brown S., Porter R.T.J. (2016) Impact of stream impurities on compressor power requirements for CO2 pipeline transportation, Int. J. Greenhouse Gas Control 54, 652–661. https://doi.org/10.1016/j.ijggc.2016.08.010. [CrossRef] [Google Scholar]
- Jackson S., Brodal E. (2019) Optimization of the energy consumption of a carbon capture and sequestration related carbon dioxide compression processes, Energies 12, 9. https://doi.org/10.3390/en12091603. [CrossRef] [Google Scholar]
- Dlamini G.M., Fosbøl P.L., Ness K., Remiezowicz E., Losnegård S.E., von Solms N. (2023) Optimisation of carbon dioxide pressurisation pathways for pipeline offshore delivery, Int. J. Greenhouse Gas Control 128, 103943. https://doi.org/10.1016/j.ijggc.2023.103943. [CrossRef] [Google Scholar]
- Magli F., Spinelli M., Fantini M., Romano M.C., Gatti M. (2022) Techno-economic optimization and off-design analysis of CO2 purification units for cement plants with oxyfuel-based CO2 capture, Int. J. Greenhouse Gas Control 115, 103591. https://doi.org/10.1016/j.ijggc.2022.103591. [CrossRef] [Google Scholar]
- Steimel J. (2020) pyflowsheet, Available at https://github.com/Nukleon84/pyflowsheet. [Google Scholar]
- LE Øi., Eldrup N., Adhikari U., Bentsen M.H., Badalge J.L., Yang S. (2016) Simulation and cost comparison of CO2 liquefaction, Energy Procedia 86, 500–510. The 8th Trondheim Conference on CO2 capture, transport and storage. https://doi.org/10.1016/j.egypro.2016.01.051. [CrossRef] [Google Scholar]
- Cakartas M., Zhou J., Ren J., Andreasen A., Yu H. (2024) Techno-economical evaluation and comparison of various CO2 transportation pathways, Computer Aided Chemical Engineering 53, 2077–2082. https://doi.org/10.1016/B978-0-443-28824-1.50347-1. [CrossRef] [Google Scholar]
- Bell I.H., Wronski J., Quoilin S., Lemort V. (2014) Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp, Ind. Eng. Chem. Res. 53, 6, 2498–2508. https://doi.org/10.1021/ie4033999. [CrossRef] [Google Scholar]
- Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. (2018) NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg. https://doi.org/10.18434/T4/1502528. https://www.nist.gov/srd/refprop. [Google Scholar]
- Span R., Wagner W. (2009) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25, 6, 1509. https://doi.org/10.1063/1.555991. [Google Scholar]
- Lemmon E.W., Jacobsen R.T. (1999) A generalized model for the thermodynamic properties of mixtures, Int. J. Thermophys. 20, 3, 825–835. https://doi.org/10.1023/A:1022627001338. [CrossRef] [Google Scholar]
- Kunz O., Wagner W. (2012) The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004, J. Chem. Eng. Data 57, 11, 3032–3091. https://doi.org/10.1021/JE300655B. [CrossRef] [Google Scholar]
- Gernert J., Span R. (2016) EOS-CG: a Helmholtz energy mixture model for humid gases and CCS mixtures, J. Chem. Thermodyn. 93, 274–293. https://doi.org/10.1016/J.JCT.2015.05.015. [CrossRef] [Google Scholar]
- Herrig S. (2018) New Helmholtz-energy equations of state for pure fluids and CCS-relevant mixtures, PhD thesis, Ruhr Universität Bochum, Bochum. [Google Scholar]
- Andreasen A. (2021) HydDown: a Python package for calculation of hydrogen (or other gas) pressure vessel filling and discharge, J. Open Source Softw. 6, 66, 3695. https://doi.org/10.21105/joss.03695. [CrossRef] [Google Scholar]
- Andreasen A., Sousa L.-H., Agustsson G. (2022) An open source tool for calculating CO2 pipeline decompression wave speed, Simulation Notes Europe 32, 4, 187–193. https://doi.org/10.11128/sne.32.tn.10622. [CrossRef] [Google Scholar]
- McKinney W. (2010) Data structures for statistical computing in Python, in: van der Walt S., Millman J. (eds), Proceedings of the 9th Python in Science Conference, Austin, Texas, June 28–July 3, SciPy Proceedings, pp. 51–56. [Google Scholar]
- Hunter J.D. (2007) Matplotlib: a 2D graphics environment, Comput. Sci. Eng. 9, 3, 90–95. https://doi.org/10.1109/MCSE.2007.55. [NASA ADS] [CrossRef] [Google Scholar]
- Bell C. (2023) ht: Heat transfer component of Chemical Engineering Design Library (ChEDL). Available at Available at https://github.com/CalebBell/ht. [Google Scholar]
- Bell C. (2023) fluids: Fluid dynamics component of Chemical Engineering Design Library (ChEDL), Available at https://github.com/CalebBell/fluids. [Google Scholar]
- Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S.J., Brett M., Wilson J., Millman K.J., Mayorov N., Nelson A.R.J., Jones E., Kern R., Larson E., Carey C.J., Polat İ., Feng Y., Moore E.W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E.A., Harris C.R., Archibald A.M., Ribeiro A.H., Pedregosa F., van Mulbregt P., SciPy 1.0 Contributors (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods 17, 3, 261–272. https://doi.org/10.1038/s41592-019-0686-2. [NASA ADS] [CrossRef] [Google Scholar]
- Harris C.R., Millman K.J., van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., Kern R., Picus M., Hoyer S., van Kerkwijk M.H., Brett M., Haldane A., Del Río J.F., Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy T., Weckesser W., Abbasi H., Gohlke C., Oliphant T.E. (2020) Array programming with NumPy, Nature 585, 7825, 357–362. https://doi.org/10.1038/s41586-020-2649-2. [NASA ADS] [CrossRef] [Google Scholar]
- Woods D.R. (2007) Appendix D: Capital cost guidelines. Rules of thumb in engineering practice, John Wiley & Sons Ltd, Weinheim, Germany, pp. 376–436. ISBN: 9783527611119. https://doi.org/10.1002/9783527611119.app4. [CrossRef] [Google Scholar]
- van Amsterdam M. (2018) Factorial techniques applied in chemical plant cost estimation, PhD thesis, Delft University of Technology, Delft, Netherlands. [Google Scholar]
- Peters M.S., Timmerhaus K.D. (2003) Plant design and economics for chemical engineers, 5th edn, McGraw Hill New Delhi. [Google Scholar]
- Price B. (Ed.), (2012)GPSA engineering data book, 13th edn, Vol. I–II, Gas Processors Suppliers Association, Tulsa, OK. [Google Scholar]
- ASME Boiler and Pressure Vessel Committee. Subcommittee on Pressure Vessels and American Society of Mechanical Engineers (2007) Rules for Construction of Pressure Vessels: Division 1. ASME boiler and pressure vessel code: an international code, American Society of Mechanical Engineers. ISBN: 9780791830680. [Google Scholar]
- Ali H., Eldrup N.H., Normann F., Skagestad R., Øi L.E. (2019) Cost estimation of CO2 absorption plants for CO2 mitigation – method and assumptions, Int. J. Greenhouse Gas Control 88, 10–23. https://doi.org/10.1016/j.ijggc.2019.05.028. [CrossRef] [Google Scholar]
- Aromada S.A., Eldrup N.H., Øi L.E. (2021) Capital cost estimation of CO2 capture plant using enhanced detailed factor (EDF) method: installation factors and plant construction characteristic factors, Int. J. Greenhouse Gas Control 110, 103394. https://doi.org/10.1016/j.ijggc.2021.103394. [CrossRef] [Google Scholar]
- Hand W. (1958) From flow sheet to cost estimate, Pet. Ref. 37, 331–337. [Google Scholar]
- Shirdel S., Valand S., Fazli F., Winther-Sørensen B., Aromada S.A., Karunarathne S., Øi L.E. (2022) Sensitivity analysis and cost estimation of a CO2 capture plant in aspen HYSYS, ChemEngineering 6, 2. https://doi.org/10.3390/chemengineering6020028. [CrossRef] [Google Scholar]
- Jensen E.H., Andreasen A., Jørsboe J.K., Andersen M.P., Hostrup M., Elmegaard B., Riber C., Fosbøl P.L. (2024) Electrification of amine-based CO2 capture utilizing heat pumps, Carbon Capture Sci. Technol. 10, 100154. https://doi.org/10.1016/j.ccst.2023.100154. [CrossRef] [Google Scholar]
- Short W., Packey D.J., Holt T. (1995) A manual for the economic evaluation of energy efficiency and renewable energy technologies, Technical Report NREL/TP-462-5173, National Renewable Energy Laboratory, Golden, CO, https://www.nrel.gov/docs/legosti/old/5173.pdf. [Google Scholar]
- Towler G., Sinnott R. (2013) Chemical engineering design, 2nd edn, Butterworth-Heinemann, Boston, MA. ISBN: 978-0-08-096659-5. https://doi.org/10.1016/B978-0-08-096659-5.00001-8. [Google Scholar]
- Seider W.D., Lewin D.R., Seader J.D., Widagdo S., Gani R., Ng K.M. (2016) Product and process design principles: synthesis, analysis and evaluation, Wiley, New York, NY. [Google Scholar]
- De Medeiros D.W.O. (2023) DWSIM – the open source process simulator. Available at https://dwsim.org/. [Google Scholar]
- Andreasen A. (2022) Evaluation of an open-source chemical process simulator using a plant-wide oil and gas separation plant flowsheet model as basis, Period. Polytech. Chem. Eng 66, 3, 503–511. https://doi.org/10.3311/PPch.19678. [CrossRef] [Google Scholar]
- Mikunda T., van Deurzen J., Seebregts A., Tetteroo M., Kersemakers K., Apeland S., CO2Europipe (2011) Towards a transport infrastructure for large-scale CCS in Europe, D3.3.1 Legal, financial and organizational aspects of CO2 pipeline infrastructures, Technical Report, EU CO2Europipe Consortium, TNO, Utrecht, The Netherlands. [Google Scholar]
- Mallon W., Buit L., van Wingerden J., Lemmens H., Eldrup N.H. (2013) Costs of CO2 transportation infrastructures, Energy Procedia 37, GHGT-11 Proceedings of the 11th International Conference on Greenhouse Gas Control Technologies, 18–22 November 2012, Kyoto, Japan, 2969–2980. https://doi.org/10.1016/j.egypro.2013.06.183. [CrossRef] [Google Scholar]
- Integrated Environmental Control Model (IECM) (2023) A tool for calculating the performance, emissions, and cost of a fossil-fuelled power plant. Available at https://www.uwyo.edu/iecm/index.html. [Google Scholar]
- IECM Technical Documentation (2018) Amine-based post-combustion CO2 capture. Available at https://www.uwyo.edu/iecm/bfiles/documentation/201901iecmtdamine-based-co2-cap.pdf. [Google Scholar]
- Aarsleff (2023) Kompressor station ved Egtved. Available at https://www.aarsleff.dk/img/5932/0/0/Download/160-kompressorstation-ved-egtved-dk. [Google Scholar]
- Streicher (2023) Compressor station Egtved. Available at https://www.streicher.de/fileadmin/userupload/www.streicher.de/Referenzen/Rohrleitungs–Anlagenbau/EPC-Bereich/ProjektberichtEgtvedDaenemarkENrev2red.pdf. [Google Scholar]
- Bayernets (2023) Wertingen compressor station in figures. Available at https://www.bayernets.de/fileadmin/Dokumente/Pressemitteilungen/2019-12-17/EN/FactsheetWertingenCompressorStation.pdf. [Google Scholar]
- The Danish Complaints Board for Public Procurement (2020) Verdict: MMEC Mannesmann Gmbh vs. Energinet Gas TSO A/S J.nr.: 20/04052. Available at https://kammeradvokaten.dk/media/7967/mmecmannesmanngmbhmodenerginetgastsoas.pdf. [Google Scholar]
- Hendriks C., Graus W., van Bergen F. (2004) Global carbon dioxide storage potential and costs, Technical Report EEP-02001, ECOFYS/TNONITG, Rijksinstituut voor Volksgezondheid en Milieu, The Netherlands. [Google Scholar]
- McCollum D.L., Ogden J.M. (2006) Techno-economic models for carbon dioxide compression, transport, and storage and correlations for estimating carbon dioxide density and viscosity, Technical Report UCD-ITS-RR-06-14, Institute of Transportation Studies, University of California, Davis, CA. Available at https://itspubs.ucdavis.edu/downloadpdf.php?id=1047. [Google Scholar]
- Musardo A., Pelella M., Patel V., Weatherwax M., Giovani G., Cipriani S. (2013) CO2 compression at world’s largest carbon dioxide injection project, in: Proceedings of the Second Middle East Turbomachinery Symposium, Doha, Qatar, 17–20 March. [Google Scholar]
- Brun K., Pettinato B., Ross S., Omatick T., Thorp J. (2023) CO2 compression challenges, World Pipelines, 23. [Google Scholar]
- Porter R.T., Fairweather M., Pourkashanian M., Woolley R.M. (2015) The range and level of impurities in CO2 streams from different carbon capture sources, Int. J. Greenhouse Gas Control 36, 161–174. https://doi.org/10.1016/j.ijggc.2015.02.016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.