Issue |
Sci. Tech. Energ. Transition
Volume 80, 2025
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.2516/stet/2024110 | |
Published online | 29 January 2025 |
- Sadabadi M.S. (2021) A distributed control strategy for parallel DC-DC converters, IEEE Control Syst. Lett. 5, 4, 1231–1236. [CrossRef] [MathSciNet] [Google Scholar]
- Wu J., Lu Y. (2020) Decoupling and optimal control of multilevel buck DC–DC converters with inverse system theory, IEEE Trans. Ind. Electron. 67, 9, 7861–7870. [CrossRef] [Google Scholar]
- Yin Y., et al. (2020) Advanced control strategies for DC–DC Buck converters with parametric uncertainties via experimental evaluation, IEEE Trans. Circuits Syst. I Regul. Pap. 67, 12, 5257–5267. [CrossRef] [MathSciNet] [Google Scholar]
- Veerachary M., Trivedi A. (2022) Linear matrix inequality-based multivariable controller design for boost cascaded charge-pump-based double-input DC–DC converter, IEEE Trans. Ind. Appl. 58, 6, 7515–7528. [CrossRef] [Google Scholar]
- Abdel-Rahim O., Wang H. (2020) A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems, CPSS Trans. Power Electron. Appl. 69, 2, 191–200. [CrossRef] [Google Scholar]
- Li P., Wang Y., Liu L., Li X., Zuo Z. (2022) Low frequency current-mode control for DC-DC boost converters with overshoot suppression, IEEE Trans. Circuits Syst. I Regul. Pap. 69, 11, 4702–4713. [CrossRef] [Google Scholar]
- Aranda E.D., Litrán S.P., Prieto M.B.F. (2022) Combination of interleaved single-input multiple-output DC-DC converters, CSEE J. Power Energy Syst 8, 1, 132–142. [Google Scholar]
- Esteban F.D., Serra F.M., De Angelo C.H. (2021) Control of a DC-DC dual active bridge converter in DC microgrids applications, IEEE Latin Am. Trans. 19, 8, 1261–1269. [CrossRef] [Google Scholar]
- Wang Z., Li S., Li Q. (2020) Discrete-time fast terminal sliding mode control design for DC–DC buck converters with mismatched disturbances, IEEE Trans. Ind. Inform. 16, 2, 1204–1213. [CrossRef] [Google Scholar]
- Repecho V., Olm J.M., Griñó R., Dòria-Cerezo A., Fossas E. (2021) Modelling and nonlinear control of a magnetically coupled multiport DC-DC converter for automotive applications, IEEE Access 9, 63345–63355. [CrossRef] [Google Scholar]
- Kobaku T., Rao V., Patwardhan S.C., Agarwal V. (2021) Improved set-point tracking and disturbance rejection of DC–DC converters using voltage-mode digital control, IEEE J. Emerg. Sel. Top. Power Electron. 9, 3, 3276–3286. [CrossRef] [Google Scholar]
- Silva A.W.N.D., Bezerra L.D.S., Jucá S.C.S., Pereira R.I.S., Medeiros C.M.D.S. (2020) Control and monitoring of a Flyback DC-DC converter for photovoltaic applications using embedded IoT system, IEEE Latin Am. Trans 18, 11, 892–1899. [Google Scholar]
- Wang J., Sun K., Xue C., Liu T., Li Y. (2022) Multi-port DC-AC converter with differential power processing DC-DC converter and flexible power control for battery ESS integrated PV systems, IEEE Trans. Ind. Electron. 69, 5, 4879–4889. [CrossRef] [Google Scholar]
- Loranca-Coutiño J., et al. (2021) Model-based and model-free control of DC–DC converters with high-order dynamics and limited measurements, IEEE Trans. Indus. Electron. 68, 8, 6750–6761. [CrossRef] [Google Scholar]
- Maddalena E.T., Specq M.W.F., Wisniewski V.L., Jones C.N. (2021) Embedded PWM predictive control of DC-DC power converters via piecewise-affine neural networks, IEEE Open J. Ind. Electron. Soc. 2, 199–206. [CrossRef] [Google Scholar]
- Chen N., Liu J., Ma S., Wei T. (2021) Digital current-mode controller using delta operator and advance sampling predictive control for high-frequency DC–DC switching converters, IEEE J. Emerg. Sel. Top. Power Electron. 9, 5, 6272–6281. [CrossRef] [MathSciNet] [Google Scholar]
- Hou N., Li Y. (2021) A direct current control scheme with compensation operation and circuit-parameter estimation for full-bridge DC–DC converter, IEEE Trans. Power Electron. 36, 1, 1130–1142. [CrossRef] [Google Scholar]
- Li Y., Ruan X., Zhang L., Lo Y.-K. (2020) Multipower-level hysteresis control for the class E DC–DC converters, IEEE Trans. Power Electron. 35, 5 5279–5289. [CrossRef] [Google Scholar]
- Hou N., Ding L., Gunawardena P., Zhang Y., Li Y.W. (2022) A comprehensive comparison of two fast-dynamic control structures for the DAB DC–DC converter, IEEE Trans. Power Electron. 37, 6, 6488–6500. [CrossRef] [MathSciNet] [Google Scholar]
- Liu J., Liu Z., Chen W., Su H., Zhang L. (2022) Current sharing based on incremental passivity and unknown load finite-time estimation for multilevel connected DC–DC converters, IEEE Trans. Ind. Electron. 69, 1, 713–724. [CrossRef] [Google Scholar]
- Dai Y., Luo S., Li Z. (2021) Direct power based control strategy for DAB DC-DC converter with cooperative triple phase shifted modulation, IEEE Access 9, 147791–147800. [CrossRef] [Google Scholar]
- Chinchero H., Alonso M. (2021) Using Magnetic Control of DC-DC Converters in LED Driver Applications, IEEE Latin Am. Trans. 19, 2, 297–305. [CrossRef] [Google Scholar]
- Sadabadi M.S., Mijatovic N., Trégouët J.F., Dragičević T. (2022) Distributed control of parallel DC–DC converters under FDI attacks on actuators, IEEE Trans. Ind. Electron. 69, 10, 10478–10488. [CrossRef] [Google Scholar]
- Chen N., Ma S., Yang L., Wei T. (2022) Digital V2 controller IC using delta operator and improved average predictive control for DC–DC converters with fast transient response, IEEE J. Emerg. Sel. Top. Power Electron. 10, 3, 3219–3229. [CrossRef] [Google Scholar]
- Tesaki K., Hagiwara M. (2021) Control and experimental verification of a bidirectional nonisolated DC–DC converter based on switched-capacitor converters, IEEE Trans. Power Electron. 36, 6, 6501–6512. [CrossRef] [Google Scholar]
- Al-Baidhani H., Salvatierra T., Ordóñez R., Kazimierczuk M.K. (2021) Simplified nonlinear voltage-mode control of PWM DC-DC buck converter, IEEE Trans. Energy Convers. 36, 1, 431–440. [CrossRef] [Google Scholar]
- Wang M., et al. (2021) Hybrid control strategy for an integrated DAB–LLC–DCX DC–DC converter to achieve full-power-range zero-voltage switching, IEEE Trans. Power Electron. 36, 12, 14383–14397. [CrossRef] [Google Scholar]
- Hajihosseini M., Andalibi M., Gheisarnejad M., Farsizadeh H., Khooban M.H. (2020) DC/DC power converter control-based deep machine learning techniques: Real-time implementation, IEEE Trans. Power Electron. 35, 10, 9971–9977. [CrossRef] [Google Scholar]
- Song W., Zhong M., Luo S., Yang S. (2020) Model predictive power control for bidirectional series-resonant isolated DC–DC converters with fast dynamic response in locomotive traction system, IEEE Trans. Transport. Electrific. 6, 3, 1326–1337. [CrossRef] [Google Scholar]
- Guler N., Biricik S., Bayhan S., Komurcugil H. (2021) Model predictive control of DC–DC SEPIC converters with autotuning weighting factor, IEEE Trans. Ind. Electron. 68, 109433–109443. [CrossRef] [Google Scholar]
- Adupa C., Chidambaranathan V.S. (2024) Design and performance evaluation of multilevel inverter for solar energy systems and electric vehicle charging with multi output active clamp forward converter, Sci. Technol. Energy Trans. 79, 93. [Google Scholar]
- Saurabh S., Kumar R. (2024) Optimizing PV integration: Addressing energy fluctuations through BIPV and rooftop PV synergy, Sci. Technol. Energy Trans. 79, 6. [Google Scholar]
- Mari J.L., Delay F., Voisin C., Gaudiani P. (2023) Active and passive acoustic logging applied to the detection of preferential flow in a sedimentary aquifer, Sci. Technol. Energy Trans. 78, 25. [Google Scholar]
- Le V.H., Caumon M.C., Pironon J., de Donato P., Piedevache M., Randi A, Barres O. (2023) Quantitative monitoring of dissolved gases in a flooded borehole: calibration of the analytical tools, Sci. Technol. Energy Trans. 78, 21. [Google Scholar]
- Kiemde A.F., Ferrando N., de Hemptinne J.C., Le Gallo Y., Reveillère A., Pinto J.S.R. (2023) Hydrogen and air storage in salt caverns: a thermodynamic model for phase equilibrium calculations, Sci. Technol. Energy Trans. 78, 10. [Google Scholar]
- Andrés-Martínez O., Flores-Tlacuahuac A., Ruiz-Martinez O.F., Mayo-Maldonado J.C. (2021) Nonlinear model predictive stabilization of DC–DC boost converters with constant power loads, IEEE J. Emerg. Sel. Top. Power Electron. 9, 1, 822–830. [CrossRef] [Google Scholar]
- Zheng Y., Guo J., Leung K.N. (2020) A single-inductor multiple-output buck/boost DC–DC converter with duty-cycle and control-current predictor, IEEE Trans. Power Electron. 35, 11, 12022–12039. [CrossRef] [Google Scholar]
- Tavan M., Sabahi K., Hajizadeh A., Soltani M.N., Jessen K. (2021) Overcoming the detectability obstacle in adaptive output feedback control of DC–DC boost converter with unknown load, IEEE Trans. Control Syst. Technol. 29, 6, 2678–2686. [CrossRef] [Google Scholar]
- Rocha E.M., Barra W., Lucas K.E., Medeiros R.L.P., Vaca-Benavides D.A. (2020) Design and experimental assessment of a robust voltage control for DC-DC converters considering components parametric uncertainties, IEEE Access 8, 109217–109231. [CrossRef] [Google Scholar]
- Zhuo S., Gaillard A., Xu L., Paire D., Gao F. (2020) Extended state observer-based control of DC–DC converters for fuel cell application, IEEE Trans. Power Electron. 35, 9, 9923–9932. [CrossRef] [Google Scholar]
- Merey S., Chen L. (2023) Worldwide regulations and policy trends on gas production from gas hydrates, Sci. Technol. Energy Trans. 78, 23. [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Quantitative analysis of DC–DC converter models: a statistical perspective based on solar photovoltaic power storage, Energy Harvest. Syst. 9, 1, 113–121. [CrossRef] [Google Scholar]
- Xie N., Liu J., Wang Y., Yin Z., Chen C., Wang L. (2024) Synergistic adaptive control of virtual inertia and damping coefficient in virtual synchronous generators for standalone microgrid applications, Sci. Technol. Energy Trans. 79, 75. [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Maintain maximum power point tracking of photovoltaic using SEPIC converter, in: 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), January, IEEE, pp. 1–6. [Google Scholar]
- Mingming S., Jun M., Xiaolong X., Fan W. (2024) Research on the multi-scenario control strategy of an active distribution network based on Rotary Power Flow controller, Sci. Technol. Energy Trans. 79, 51. [Google Scholar]
- Dutta S., Johnson B. (2022) A practical digital implementation of completely decentralized ripple minimization in parallel-connected DC–DC converters, IEEE Trans. Power Electron. 37, 12, 14422–14433. [CrossRef] [Google Scholar]
- Sidorov V., Chub A., Vinnikov D., Bakeer A. (2021) An overview and comprehensive comparative evaluation of constant-frequency voltage buck control methods for series resonant DC–DC converters, IEEE Open J. Ind. Electron. Soc. 2, 65–79. [CrossRef] [Google Scholar]
- Zhang X., Zhang Z., Bao H., Bao B., Qu X. (2021) Stability effect of control weight on multiloop COT-controlled buck converter with PI compensator and small output capacitor ESR, IEEE J. Emerg. Sel. Top. Power Electron. 9, 4, 4658–4667. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2024) Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system, Energy Harvest. Syst. 11, 1, 20230029. [CrossRef] [Google Scholar]
- Tabassum S., Babu A.R.V., Dheer D.K. (2024) A comprehensive exploration of IoT-enabled smart grid systems: power quality issues, solutions, and challenges, Sci. Technol. Energy Trans. 79, 62. [Google Scholar]
- Hole S.R., Goswami A.D. (2022) Analysis and performance of solar photovoltaic energy system in India: case study, in: 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), September, IEEE, pp. 228–234. [Google Scholar]
- Rajendra Hole S., Goswami A.D. (2023) Design GA & PSO-based high-efficiency SEPIC DC-DC converter for context-aware duty cycle control, Electric Power Comp. Syst. 1–20. [CrossRef] [Google Scholar]
- Tabassum S., Babu A.R.V., Dheer D.K. (2024) Real-time power quality enhancement in smart grids through IoT and adaptive neuro-fuzzy systems, Sci. Technol. Energy Trans. 79, 89. [Google Scholar]
- Hole S.R., Goswami A.D. (2023) Solar analytics using AWS serverless services, in: Machine learning and the Internet of things in solar power generation, CRC Press, pp. 1–20. [Google Scholar]
- Zhang L., Ding H., Tian W., Lu K. (2021) Research on five-level control scheme of hybrid-bridge bidirectional DC–DC converter, IEEE J. Emerg. Sel. Top. Power Electron. 9, 2, 1339–1349. [CrossRef] [Google Scholar]
- Zhou D., Wang J., Li Y., Zou J., Sun K. (2022) Model predictive power control of grid-connected quasi single-st, age converters for high-efficiency low-voltage ESS integration, IEEE Trans. Ind. Electron. 69, 2, 1124–1134. [CrossRef] [Google Scholar]
- Hole S.R., Goswami A.D. (2024) EPCMSDB: Design of an ensemble predictive control model for solar PV MPPT deployments via dual bioinspired optimizations, Sci. Technol. Energy Trans. 79, 8. [Google Scholar]
- Goswami A.D., Hole S.R. (2024) Analysis and comparison of the DC-DC converter with soft computing algorithm, EAI Endorsed Trans. Scalable Inf. Syst. 11, 2, 1–8. [Google Scholar]
- Li X.L., Dong Z., Tse C.K., Lu D.D.-C. (2020) Single-inductor multi-input multi-output DC–DC converter with high flexibility and simple control, IEEE Trans. Power Electron. 35, 12, 13104–13114. [CrossRef] [Google Scholar]
- Luo C., Huang S. (2020) Novel voltage balancing control strategy for dual-active-bridge input-series-output-parallel DC-DC converters, IEEE Access 8, 103114–103123. [CrossRef] [Google Scholar]
- Xia P., Shi H., Wen H., Bu Q., Hu Y., Yang Y. (2020) Robust LMI-LQR control for dual-active-bridge DC–DC converters with high parameter uncertainties, IEEE Trans. Transport. Electrific. 6, 1, 131–145. [CrossRef] [MathSciNet] [Google Scholar]
- Mayo-Maldonado J.C., Ruiz-Martinez O.F., Escobar G., Valdez-Resendiz J.E., Maupong T.M., Rosas-Caro J.C. (2021) Nonlinear stabilizing control design for DC–DC converters using lifted models, IEEE Trans. Ind. Electron. 68, 11, 10772–10783. [CrossRef] [Google Scholar]
- Braitor A.-C., Konstantopoulos G.C., Kadirkamanathan V. (2021) Current-limiting droop control design and stability analysis for paralleled boost converters in DC microgrids, IEEE Trans. Control Syst. Technol. 29, 1, 385–394. [CrossRef] [Google Scholar]
- Sebastián E., Montijano E., Oyarbide E., Bernal C., Gálvez R. (2022) Nonlinear implementable control of a dual active bridge series resonant converter, IEEE Trans. Ind. Electron. 69, 5, 5111–5121. [CrossRef] [Google Scholar]
- Mosayebi M., Khooban M.H. (2020) A robust shipboard DC-DC power converter control: concept analysis and experimental results, IEEE Trans. Circuits Syst. II: Exp. Briefs 67, 11, 2612–2616. [Google Scholar]
- Kobaku T., Jeyasenthil R., Sahoo S., Ramchand R., Dragicevic T. (2021) Quantitative feedback design-based robust PID control of voltage mode controlled DC-DC boost converter, IEEE Trans. Circuits Syst. II Exp. Briefs 68, 1, 286–290. [Google Scholar]
- Güven B., Güler N., Altin N. (2022) Modified fast terminal sliding mode control for DC-DC buck power converter with switching frequency regulation, Int. Trans. Electr. Energy Syst. 2022, 1, 5076611. [Google Scholar]
- Azizi S., Asemani M.H., Vafamand N., Mobayen S., Khooban M.H. (2021) A linear parameter varying control approach for DC/DC converters in all‐electric boats, Complexity 2021, 1, 8848904. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.