Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
|
|
---|---|---|
Article Number | 91 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.2516/stet/2024072 | |
Published online | 05 November 2024 |
- Nagarajan D., Lee D.J., Kondo A., Chang J.S. (2017) Recent insights into biohydrogen production by microalgae – from biophotolysis to dark fermentation, Bioresource Technol. 227, 373–387. https://doi.org/10.1016/j.biortech.2016.12.104. [CrossRef] [Google Scholar]
- Zabed H.M., Akter S., Yun J., Zhang G., Zhang Y., Qi X. (2020) Biogas from microalgae: technologies, challenges and opportunities, Renew. Sustain. Energy Rev. 117, July, 109503. https://doi.org/10.1016/j.rser.2019.109503. [CrossRef] [Google Scholar]
- Elshobary M.E., Zabed H.M., Yun J., Zhang G., Qi X. (2021) Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity, Int. J. Hydrogen Energy 46, 4, 3135–3159. https://doi.org/10.1016/j.ijhydene.2020.06.251. [CrossRef] [Google Scholar]
- Kosourov S., Murukesan G., Seibert M., Allahverdiyeva Y. (2017) Evaluation of light energy to H2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions, Algal Res. 28, September, 253–263. https://doi.org/10.1016/j.algal.2017.09.027. [CrossRef] [Google Scholar]
- Oyekale J., Petrollese M., Tola V., Cau G. (2020) Impacts of renewable energy resources on effectiveness of grid-integrated systems: succinct review of current challenges and potential solution strategies, Energies 13, 18, 4856. https://doi.org/10.3390/en13184856. [CrossRef] [Google Scholar]
- Shukla M., Kumar S. (2018) Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels, Renew. Sustain. Energy Rev. 82, October, 402–414. https://doi.org/10.1016/j.rser.2017.09.067. [CrossRef] [Google Scholar]
- Zabed H.M., Akter S., Yun J., Zhang G., Awad F.N., Qi X., Sahu J.N. (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production, Renew. Sustain. Energy Rev. 105, January, 105–128. https://doi.org/10.1016/j.rser.2019.01.048. [CrossRef] [Google Scholar]
- Arun S., Sinharoy A., Pakshirajan K., Lens P.N.L. (2020) Algae based microbial fuel cells for wastewater treatment and recovery of value-added products, Renew. Sustain. Energ. Rev. 132, 110041. [CrossRef] [Google Scholar]
- Jiang K., Baburin I.A., Han P., Yang C., Fu X., Yao Y., Li J., Cánovas E., Seifert G., Chen J., Bonn M., Feng X., Zhuang X. (2020) Interfacial approach toward benzene-bridged polypyrrole film–based micro-supercapacitors with ultrahigh volumetric power density, Adv. Funct. Mater. 30, 7, 1–9. https://doi.org/10.1002/adfm.201908243. [Google Scholar]
- Ren L., Sun X., Zhang L., Huang H., Zhao Q. (2020) Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp, Bioresource Technol. 298, 122562. https://doi.org/10.1016/j.biortech.2019.122562. [CrossRef] [Google Scholar]
- Li M., Zhou M., Tan C., Tian X. (2019) Enhancement of CO2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell, Bioresour. Technol. 272 October, 501–509. [CrossRef] [Google Scholar]
- Greenman J., Gajda I., Ieropoulos I. (2019) Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines, Sustain. Energ. Fuels 3, 2546–2560. [CrossRef] [Google Scholar]
- Jaiswal K.K., Kumar V., Vlaskin M.S., Sharma N., Rautela I., Nanda M., Arora N., Singh A., Chauhan P.K. (2020) Microalgae fuel cell for wastewater treatment: recent advances and challenges, J. Water Process Eng. 38, 101549. [CrossRef] [Google Scholar]
- Sharma M., Salama E.-S., Zhang P., Zhang L., Xing X., Yue J., Song Z., Nan L., Yujun S., Li X. (2022) Microalgae-assisted microbial fuel cells for electricity generation coupled with wastewater treatment: biotechnological prospective, J. Water Process Eng. 49, 102966. https://doi.org/10.1016/j.jwpe.2022.102966. [CrossRef] [Google Scholar]
- Reddy C.N., Kakarla R., Min B. (2018) Chapter 3.7 – Algal biocathodes, in: S.V. Mohan, A. Pandey, S. Varjani (eds), Biomass, biofuels, biochemicals: microbial electrochemical technology: sustainable platform for fuels, chemicals and remediation, Elsevier, pp. 525–547. https://doi.org/10.1016/B978-0-444-64052-9.00021-2. [Google Scholar]
- Symes M.D., Cogdell R.J., Cronin L. (2013) Designing artificial photosynthetic devices using hybrid organic–inorganic modules based on polyoxometalates, Phil. Trans. R. Soc. A. 3712011041120110411. http://doi.org/10.1098/rsta.2011.0411. [Google Scholar]
- Nwoba E.G., Parlevliet D.A., Laird D.W., Alameh K., Moheimani N.R. (2019) Light management technologies for increasing algal photobioreactor efficiency, Algal Res. 39, 9264. https://doi.org/10.1016/j.algal.2019.101433. [Google Scholar]
- Meylani V., Surahman E., Fudholi A., Almalki W.H., Ilyas N., Sayyed R.Z. (2023) Biodiversity in microbial fuel cells: review of a promising technology for wastewater treatment, J. Environ. Chem. Eng. 11, 2, 109503. https://doi.org/10.1016/j.jece.2023.109503. [CrossRef] [Google Scholar]
- Patwardhan S.B., Savla N., Pandit S., Gupta P.K., Mathuriya A.S., Lahiri D., Jadhav D.A., Rai A.K., KanuPriya Ray R.R., Singh V. (2021) Microbial fuel cell united with other existing technologies for enhanced power generation and efficient wastewater treatment, Appl. Sci. 11, 22, 10777. https://doi.org/10.3390/app112210777. [CrossRef] [Google Scholar]
- Baicha Z., Salar-García M.J., Ortiz-Martínez V.M., Hernández-Fernández F.J., de los Ríos A.P., Labjar N., Lotfi E., Elmahi M. (2016) A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells, Fuel Process. Technol. 154, 104–116. https://doi.org/10.1016/j.fuproc.2016.08.017. [CrossRef] [Google Scholar]
- Gude V.G. (2016) 8 – Microbial fuel cells for wastewater treatment and energy generation, in: Scott K., Yu E.H. (eds), Microbial electrochemical and fuel cells, Woodhead Publishing, pp. 247–285. ISBN 9781782423751, https://doi.org/10.1016/B978-1-78242-375-1.00008-3. [CrossRef] [Google Scholar]
- Kusmayadi A., Leong Y.K., Yen H.W., Huang C.Y., Dong C.D., Chang J.S. (2020) Microalgae-microbial fuel cell (mMFC): an integrated process for electricity generation, wastewater treatment, CO2 sequestration and biomass production, Int. J. Energy Res. 44, 12, 9254–9265. https://doi.org/10.1016/j.chemosphere.2021.129800. [CrossRef] [Google Scholar]
- Slate A.J., Whitehead K.A., Brownson D.A.C., Banks C.E. (2019) Microbial fuel cells: An overview of current technology, Renew. Sustain. Energy Rev 101, 60–81. https://doi.org/10.1016/j.rser.2018.09.044. [CrossRef] [Google Scholar]
- Saravanan A., Senthil Kumar P., Srinivasan S., Jeevanantham S., Kamalesh R., Karishma S. (2022) Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy, Chemosphere 290, 133295. https://doi.org/10.1016/j.chemosphere.2021.133295. [CrossRef] [PubMed] [Google Scholar]
- Hoang A.T., Nižetić S., Ng K.H., Papadopoulos A.M., Le A.T., Kumar S., Hadiyanto H., Pham V.V. (2022) Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector, Chemosphere 287, 3, 132285. https://doi.org/10.1016/j.chemosphere.2021.132285. [CrossRef] [PubMed] [Google Scholar]
- Khandaker S., Das S., Hossain T., Islam A., Miah M.R., Awual R. (2021) Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – a comprehensive review, J. Mole. Liq. 344, 117795. https://doi.org/10.1016/j.molliq.2021.117795. [CrossRef] [Google Scholar]
- Shuiliang C., Patil S.A., Schröder U. (2018) Substrate crossover effect and performance regeneration of the biofouled rotating air-cathode in microbial fuel cell, Front. Energy Res. 6, 85. https://doi.org/10.3389/fenrg.2018.00085. [CrossRef] [Google Scholar]
- Ahmed S.F., Mofijur M., Islam N., Parisa T.A., Rafa N., Bokhari A., Klemeš J.J., Mahlia T.M.I. (2022) Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater, Energy 254, 124163. https://doi.org/10.1016/j.energy.2022.124163. [CrossRef] [Google Scholar]
- Yahampath Arachchige Don C.D.Y., Babel S. (2021) Circulation of anodic effluent to the cathode chamber for subsequent treatment of wastewater in photosynthetic microbial fuel cell with generation of bioelectricity and algal biomass, Chemosphere 278, 130455. https://doi.org/10.1016/j.chemosphere.2021.130455. [CrossRef] [PubMed] [Google Scholar]
- Sarma P.J., Malakar B., Mohanty K. (2024) Self-sustaining bioelectricity generation in Plant-based Microbial Fuel Cells (PMFCs) with microalgae-assisted oxygen-reducing biocathode, Biomass Conv. Bioref 14, 15, 16973–16986. https://doi.org/10.1007/s13399-023-03848-z. [CrossRef] [Google Scholar]
- Zhang X., Li X., Zhao X., Li Y. (2019) Factors affecting the efficiency of a bioelectrochemical system: a review, RSC Adv. 9, 34, 19748–19761. https://doi.org/10.1039/c9ra03605a [CrossRef] [Google Scholar]
- Palanisamy G., Jung H.-Y., Sadhasivam T., Kurkuri M.D., Kim S.C., Roh S.-H. (2019) A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes, J Cleaner Prod. 221, 598–621. https://doi.org/10.1016/j.jclepro.2019.02.172. [CrossRef] [Google Scholar]
- Daud S.M., Daud W.R.W., Bakar M.H.A., Kim B.H., Somalu M.R., Muchtar A., Jahim J.M., Muhammed Ali S.A. (2020) Low-cost novel clay earthenware as separator in microbial electrochemical technology for power output improvement, Bioproc. Biosyst. Eng. 43, 8, 1369–1379. https://doi.org/10.1007/s00449-020-02331-7. [CrossRef] [PubMed] [Google Scholar]
- Yadav G., Sharma I., Ghangrekar M., Sen R. (2020) A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell, J. Power Sources 449, 227560. https://doi.org/10.1016/j.jpowsour.2019.227560. [CrossRef] [Google Scholar]
- Chaturvedi A., Kundu P.P. (2021) Recent advances and perspectives in platinum-free cathode catalysts in microbial fuel cells, J. Environ. Chem. Eng. 9, 4, 105662. https://doi.org/10.1016/j.jece.2021.105662. [CrossRef] [Google Scholar]
- Hay J.X.W., Wu T.Y., Juan J.C., Jahim J. Md. (2017) Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling, Environ. Sci. Poll. Res. 24, 11, 10354–10363. https://doi.org/10.1007/s11356-017-8557-9. [CrossRef] [PubMed] [Google Scholar]
- Ou S., Kashima H., Aaron D.S., Regan J.M., Mench M.M. (2017) Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell, J. Power Sources 347, 159–169. https://doi.org/10.1016/j.jpowsour.2017.02.031. [CrossRef] [Google Scholar]
- Ndayisenga F., Yu Z., Yu Y., Lay C.-H., Zhou D. (2018) Bioelectricity generation using microalgal biomass as electron donor in a bio-anode microbial fuel cell, Bioresour Technol. 270, 2018, 286–293. https://doi.org/10.1016/j.biortech.2018.09.052. [CrossRef] [Google Scholar]
- Rahman M.M., Asiri A.M., Khaleque M.A., Sheikh M.C. (2019) Introducing an alternate conjugated material for enhanced lead(II) capturing from wastewater, J. Clean. Prod. 224, 920–929. [CrossRef] [Google Scholar]
- Mehrotra S., Kumar V.K., Gajalakshmi S., Pathak B. (2021) Bioelectrogenesis from ceramic membrane-based algal-microbial fuel cells treating dairy industry wastewater, Sustain. Energy Technol. Assess. 48, 101653. https://doi.org/10.1016/j.seta.2021.101653. [Google Scholar]
- Enamala M.K., Dixit R., Tangellapally A., Singh M., Dinakarrao S.M., Chavali M., Pamanji S.R., Ashokkumar V., Kadier A., Chandrasekhar K. (2020) Photosynthetic microorganisms (Algae) mediated bioelectricity generation in microbial fuel cell: concise review, Environ. Technol. Innov. 19, 100959. https://doi.org/10.1016/j.eti.2020.100959. [CrossRef] [Google Scholar]
- Asiri A.M., Rahman M.M. (2020) Optimization of an innovative composited material for effective monitoring and removal of cobalt (II) from wastewater, J. Mol. Liq. 298, 112035. [CrossRef] [Google Scholar]
- Allam F., Elnouby M., El-Khatib K.M., El-Badan D.E., Sabry S.A. (2020) Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air cathode single chamber microbial fuel cell, Int. J. Hydrogen Energy 45, 10, 5911–5927. https://doi.org/10.1016/j.ijhydene.2019.09.164. [CrossRef] [Google Scholar]
- Selvaraj D., Somanathan A., Jeyakumar R.B., Kumar G. (2020) Generation of electricity by the degradation of electro-Fenton pretreated latex wastewater using double chamber microbial fuel cell, Int. J. Energy Res. 44, 15, 12496–12505. https://doi.org/10.1002/er.5503. [CrossRef] [Google Scholar]
- Senthilkumar K., Anappara S., Krishnan H., Ramasamy P. (2020) Simultaneous power generation and Congo red dye degradation in double chamber microbial fuel cell using spent carbon electrodes, Energy Sources A Recovery Util. Environ. Eff. 1–17. https://doi.org/10.1080/15567036.2020.1781978. [Google Scholar]
- Zhu Z., Zhang Y.H.P. (2017) In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose, metabolic engineering 39, September, 110–116. https://doi.org/10.1016/j.ymben.2016.11.002. [CrossRef] [PubMed] [Google Scholar]
- Halim M.A., Rahman M.O., Eti I.A., Shefa N.R., Ibrahim M., Alam M.J. (2020) Electricity generation in different cell connections with optimized anodic materials in microbial fuel cells, Energy Sources A Recovery Util. Environ. Eff. 1–13. https://doi.org/10.1080/15567036.2020.1851818. [Google Scholar]
- Goswami R., Mishra V.K. (2018) A review of design, operational conditions and applications of microbial fuel cells, Biofuels 9, 2, 203–220. https://doi.org/10.1080/17597269.2017.1302682. [CrossRef] [Google Scholar]
- Wang H., Wang Q., Li X., Wang Y., Jin P., Zheng Y., Huang J., Li Qingbiao (2019) Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell, J. Environ. Manage. 248, July, 109310. https://doi.org/10.1016/j.jenvman.2019.109310. [CrossRef] [Google Scholar]
- Wang S., Jiang J., Zhao Q., Wang K. (2022) Effects of substrate type on variation of sludge organic compounds, bioelectric production and microbial community structure in bioelectrochemically-assisted sludge treatment wetland, J. Environ. Manage. 307, December, 114548. https://doi.org/10.1016/j.jenvman.2022.114548. [CrossRef] [Google Scholar]
- Yousefi V., Mohebbi-Kalhori D., Samimi A. (2017) Ceramic-based microbial fuel cells (MFCs): a review, Int. J. Hydrogen Energy 42, 3, 1672–1690. https://doi.org/10.1016/j.ijhydene.2016.06.054. [CrossRef] [Google Scholar]
- Das I., Das S., Ghangrekar M.M. (2020) Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell, Chem. Phys. Lett. 751, April, 137536. https://doi.org/10.1016/j.cplett.2020.137536. [CrossRef] [Google Scholar]
- Ortiz-Martínez V.M., Gajda I., Salar-García M.J., Greenman J., Hernández-Fernández F.J., Ieropoulos I. (2016) Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance, Chem. Eng. J. 291, 317–324. https://doi.org/10.1016/j.cej.2016.01.084. [CrossRef] [Google Scholar]
- Lu M., Chen S., Babanova S., Phadke S., Salvacion M., Mirhosseini A., Chan S., Carpenter K., Cortese R., Bretschger O. (2017) Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater, J. Power Sourc. 356, 274–287. [CrossRef] [Google Scholar]
- Salama E.-S., Govindwar S.P., Khandare R.V., Roh H.S., Jeon B.H., Li X. (2019) Can omics approaches improve microalgal biofuels under abiotic stress?, Trends Plant Sci. 24, 611624. [Google Scholar]
- Munoz-Cupa C., Hu Y., Xu C., Bassi A. (2021) An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production, Sci. Total Environ. 754, 142429. https://doi.org/10.1016/j.scitotenv.2020.142429. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.