Issue |
Sci. Tech. Energ. Transition
Volume 79, 2024
Emerging Advances in Hybrid Renewable Energy Systems and Integration
|
|
---|---|---|
Article Number | 75 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2516/stet/2024081 | |
Published online | 02 October 2024 |
- Driesen J., Visscher K. (2008, July 1) Virtual synchronous generators, in: IEEE power and energy society general meeting – conversion and delivery of electrical energy, Pittsburgh, PA, USA, pp. 1–3. https://doi.org/10.1109/PES.2008.4596800. [Google Scholar]
- Liu J., Miura Y., Bevrani H., Ise T. (2017) Enhanced virtual synchronous generator control for parallel inverters in microgrids, IEEE Trans. Smart Grid 8, 2268–2277. https://doi.org/10.1109/TSG.2016.2521405. [CrossRef] [Google Scholar]
- Hirase Y., Sugimoto K., Sakimoto K., Ise T. (2016) Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator, IEEE J. Emerg. Sel. Top. Power Electron. 4, 1287–1298. https://doi.org/10.1109/JESTPE.2016.2581818. [CrossRef] [Google Scholar]
- Hirase Y., Abe K., Sugimoto K., Sakimoto K., Bevrani H., Ise T. (2018) A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids, Appl. Energy 210, 699–710. https://doi.org/10.1016/j.apenergy.2017.06.058. [CrossRef] [Google Scholar]
- Yang X., Song Y., Wang G., Wang W. (2010) A comprehensive review on the development of sustainable energy strategy and implementation in China, IEEE Trans. Sustain. Energy 1, 57–65. https://doi.org/10.1109/TSTE.2010.2051464. [CrossRef] [Google Scholar]
- Chen Y., Hesse R., Turschner D., Beck H. (2011) Improving the grid power quality using virtual synchronous machines, in: International conference on power engineering, energy and electrical drives, Málaga, Spain, pp. 1–6. https://doi.org/10.1109/PowerEng.2011.6036498. [Google Scholar]
- Kerdphol T., Watanabe M., Hongesombut K., Mitani Y. (2019) Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration, IEEE Access 7, 76071–76083. https://doi.org/10.1109/ACCESS.2019.2920886. [CrossRef] [Google Scholar]
- Shi K., Chen C., Sun Y., Xu P., Yang Y., Blaabjerg F. (2020) Rotor inertia adaptive control and inertia matching strategy based on parallel virtual synchronous generators system, IET Gener. Transm. Distrib. 14, 1854–1861. https://doi.org/10.1049/iet-gtd.2019.1394. [CrossRef] [Google Scholar]
- Zhu F., Peng Z., Hu W., Wang H., Zhang C., Zhao Z., Dai Y. (2021) An improved VSG control strategy for microgrid, in: IEEE international conference on electrical engineering and mechatronics technology (ICEEMT), Qingdao, China, pp. 338–342. https://doi.org/10.1109/ICEEMT52412.2021.9602085. [CrossRef] [Google Scholar]
- Rathore B., Chakrabarti S., Anand S. (2016) Frequency response improvement in microgrid using optimized VSG control, in: National power systems conference (NPSC), Bhubaneswar, India, pp. 1–6. https://doi.org/10.1109/NPSC.2016.7858916. [Google Scholar]
- Hou X., Han H., Zhong C., Yuan W., Yi M., Chen Y. (2016) Improvement of transient stability in inverter-based AC microgrid via adaptive virtual inertia, in: IEEE energy conversion congress and exposition (ECCE), Milwaukee, WI, USA, pp. 1–6. https://doi.org/10.1109/ECCE.2016.7855195. [Google Scholar]
- Li D., Zhu Q., Lin S., Bian X.Y. (2017) A self-adaptive inertia and damping combination control of VSG to support frequency stability, IEEE Trans. Energy Convers. 32, 397–398. https://doi.org/10.1109/TEC.2016.2623982. [CrossRef] [Google Scholar]
- Li J., Wen B., Wang H. (2019) Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy, IEEE Access 7, 39509–39514. https://doi.org/10.1109/ACCESS.2019.2904943. [CrossRef] [Google Scholar]
- Monica P., Kowsalya M. (2016) Control strategies of parallel operated inverters in renewable energy application: a review, Renew. Sustain. Energy Rev. 65, 885–901. https://doi.org/10.1016/j.rser.2016.06.075. [CrossRef] [Google Scholar]
- Hajilu N., Gharehpetian G.B., Hosseinian S.H., Poursistani M.R., Kohansal M. (2015) Power control strategy in islanded microgrids based on VF and PQ theory using droop control of inverters, in: International congress on electric industry automation (ICEIA), Shiraz, Iran, pp. 37–42. https://doi.org/10.1109/ICEIA.2015.7165844. [CrossRef] [Google Scholar]
- Sakimoto K., Miura Y., Ise T. (2011) Stabilization of a power system with a distributed generator by a virtual synchronous generator function, in: 8th international conference on power electronics – ECCE Asia, Jeju, South Korea, pp. 1498–1505. https://doi.org/10.1109/ICPE.2011.5944492. [CrossRef] [Google Scholar]
- Chen M., Zhou D., Blaabjerg F. (2020) Modelling, implementation, and assessment of virtual synchronous generator in power systems, J. Mod. Power Syst. Clean Energy 8, 399–411. https://doi.org/10.35833/MPCE.2019.000592. [CrossRef] [Google Scholar]
- Chen J., O’Donnell T. (2019) Parameter constraints for virtual synchronous generator considering stability, IEEE Trans. Power Syst. 34, 2479–2481. https://doi.org/10.1109/TPWRS.2019.2896853. [Google Scholar]
- Feng J., Bai F., Nadarajah M., Ma H. (2023) Transition towards inverter-based generation with VSG control: low frequency instability prospective, in: 2023 IEEE international conference on energy technologies for future grids (ETFG), Wollongong, Australia, pp. 1–6. https://doi.org/10.1109/ETFG55873.2023.10407495. [Google Scholar]
- Khajesalehi J., Afjei S.E. (2023) Fault-tolerant virtual synchronous generator control of inverters in synchronous generator-based microgrids, Electr. Power Syst. Res. 218, 109173. https://doi.org/10.1016/j.epsr.2023.109173. [CrossRef] [Google Scholar]
- Kryonidis G.C., Juan M.M., Malamaki K.-N.D., Barragán-Villarejo M., de Paula García-López F., Francisco J.M.-D., José M.M.-O., Demoulias C.S. (2023) Use of ultracapacitor for provision of inertial response in virtual synchronous generator: design and experimental validation, Electr. Power Syst. Res. 223, 109607. https://doi.org/10.1016/j.epsr.2023.109607. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.