Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Decarbonizing Energy Systems: Smart Grid and Renewable Technologies
Article Number 47
Number of page(s) 13
DOI https://doi.org/10.2516/stet/2024041
Published online 05 August 2024
  • Erdiwansyah, Mahidin, Husin H., et al. (2021) A critical review of the integration of renewable energy sources with various technologies, Prot. Control Mod. Power Syst. 6, 1, 3. [CrossRef] [Google Scholar]
  • http://www.nea.gov.cn/2022-01/26/c_1310441589.htm. [Google Scholar]
  • National Development and Reform Commission. (2015) China 2050 China 2050 high renewable energy penetration scenario and roadmap study, National Development and Reform Commission. [Google Scholar]
  • Xu Y., Geng Y., Yang B. (2021) Study on the mechanism and influencing factors of subsynchronous oscillations induced by wind farms in a fossil fuel power plant, Power Syst. Prot. Control 49, 18, 1–9. [Google Scholar]
  • Xiang W., Ban L., Zhou P. (2021) Online prediction and optimal control method for subsynchronous oscillation of wind power based on an interpretable surrogate model for machine learning, Power Syst. Prot. Control 49, 16, 67–75. [Google Scholar]
  • Zhang T., Wang H. (2021) Research methods for subsynchronous oscillation induced by wind power under weak AC system: a review, Power Syst. Prot. Control 49, 16, 177–187. [Google Scholar]
  • Wang W., Zhang C., He G., et al. (2017) Overview of research on subsynchronous oscillations in large-scale wind farm integrated system, Power Syst. Technol. 41, 4, 1050–1060. [Google Scholar]
  • Xie X., Liu H., He J., et al. (2016) Mechanism and characteristics of subsynchronous oscillation caused by the interaction between fullconverter wind turbines and AC systems, Proc. CSEE 36, 9, 2366–2372. [Google Scholar]
  • Wang J., Jia Q., Liu K., et al. (2021) Analysis of sub-synchronous torsional mode of wind-thermal bundled system transmitted via HVDC based on a signal injection method, Power Syst. Prot. Control 49, 17, 12. [Google Scholar]
  • Huang M., Wan H. (2009) Simplification of wind farm model for dynamic simulation, Trans. China Electrotech. Soc. 24, 9, 147–152. [Google Scholar]
  • Xia Y., Li Z., Cai X., et al. (2014) Dynamic modeling of wind farm composed of direct-driven permanent magnet synchronous generators, Power Syst. Technol. 38, 6, 1439–1445. [Google Scholar]
  • Mi Z., Su X., Yu Y., et al. (2010) Study on dynamic equivalence model of wind farms with wind turbine driven doubly fed induction generator, Autom. Electr. Power Syst. 34, 17, 72–77. [Google Scholar]
  • Luo K., Shi W., Qu J. (2017) Multi-machine equivalent model parameter identification method for doubly-fed induction generator (DFIG)-based wind power plant based on measurement data, J. Eng. 13, 1550–1554. [Google Scholar]
  • Zhang J., He Y. (2020) Parameters identification of equivalent model of permanent magnet synchronous generator (PMSG) wind farm based on analysis of trajectory sensitivity, Trans. China Electrotech. Soc. 35, 15, 3303–3313. [Google Scholar]
  • Kunjumuhammed L.P., Pal B.C., Oates C., et al. (2017) The adequacy of the present practice in dynamic aggregated modeling of wind farm systems, IEEE Trans. Sustain. Energy 8, 1, 23–32. [CrossRef] [Google Scholar]
  • Yang X., Yue C., Xie H. (2011) An aggregation method of permanent magnet synchronous generators wind farm model, Power Syst. Technol. 35, 2, 115–120. [Google Scholar]
  • Wu H., He Y., Zhao B., et al. (2018) Research on dynamic equivalent of wind farm based on improved K-means clustering algorithm, Acta Energ. Sol. Sin. 39, 11, 3232–3238. [Google Scholar]
  • Yan X., Li J.. (2020) Grouping method of direct drive wind farm based on principal component analysis, Power Syst. Prot. Control 48, 5, 127–133. [Google Scholar]
  • Zhou P., Li G., Sun H., et al. (2020) Equivalent modeling method of PMSG wind farm based on frequency domain impedance analysis, Proc. CSEE 40, S1, 84–90. [Google Scholar]
  • Schilders W., Rommes J., Vorst H.A. (2008) Model order reduction: theory, research aspects and applications, Springer, Berlin, Heidelberg. [CrossRef] [MathSciNet] [Google Scholar]
  • Veloso S., Gil E., Pulgar-Painemal H. (2019) Application of model order reduction to a DFIG-based wind farm in the Chilean system, in: 2019 IEEE Power & Energy Society General Meeting (PESGM), IEEE. [Google Scholar]
  • Ghosh S., Senroy N., Kamalasadan S. (2014) Reduced order modeling of wind farms for inclusion in large power system simulations for primary frequency response application, North American Power Symposium, IEEE. [Google Scholar]
  • Ali H., Pal B.C., Kunjumuhammed L.P., et al. (2019) Model order reduction of wind farms: linear approach, in: 2019 IEEE Power & Energy Society General Meeting (PESGM), IEEE. [Google Scholar]
  • Gao B., Wang G., Shao B., et al. Singular perturbation approximation method based on the dominant degree analysis for direct drive wind farm, Proc. CSEE 42, 7, 2449–2462. [Google Scholar]
  • Meng X., Zhou N., Wang Q. Multi-time scale model order reduction and stability consistency of IIDG system, Proc. CSEE 38, 13, 3813–3825+4022. [Google Scholar]
  • Su T., Du W., Wang H. (2019) A reduced order design method for subsynchronous damping controller of multi-PMSGs parallel wind farm, Trans. China Electrotech. Soc. 34, 1, 116–127. [Google Scholar]
  • Dong W., Du W., Wang H. (2021) Reduced-order modal computation method for small-signal stability examination of a wind farm, Trans. China Electrotech. Soc. 36, 7, 1468–1479. [Google Scholar]
  • Shao B., Zhao S., Gao B. (2020) Simplified model for studying the sub-synchronous oscillation of direct-drive wind farms via VSC-HVDC system based on similar transformation theory, Proc. CSEE 40, 15, 4780–4791. [Google Scholar]
  • Lei W., Semlyen A. (1990) Application of sparse eigenvalue techniques to the small signal stability analysis of large power systems, IEEE Trans. Power Syst. 5, 2, 635–642. [CrossRef] [Google Scholar]
  • Zheng W. (2007) Application of the refined Arnoldi method to the calculation of critical eigenvalues in small signal stability analysis, Zhengzhou University. [Google Scholar]
  • Tian P., Liu C., Yun F., et al. (2015) An improved IRA algorithm and its application in computation of critical eigenvalues in small signal stability analysis, Proc. CSEE 35, 17, 4318–4325. [Google Scholar]
  • Wang X.-L., Jiang Y. (2011) Model order reduction technique, Comput. Math. Appl. 62, 8, 3241–3250. [CrossRef] [MathSciNet] [Google Scholar]
  • Arnoldi W.E. (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9, 1, 6. [Google Scholar]
  • Saad Y. (1980) Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Algeb. Appl. 34, 1, 269–295. [CrossRef] [Google Scholar]
  • Daniel J.W., Gragg W.B., Kaufman L., et al. (1976) Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comput. 30, 136, 772. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.