Open Access
Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Article Number 48
Number of page(s) 15
DOI https://doi.org/10.2516/stet/2024043
Published online 07 August 2024
  • Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. (2019) The role of renewable energy in the global energy transformation, Energy Strat. Rev. 24, 38–50. [CrossRef] [Google Scholar]
  • Fan L., Tu Z., Chan S.H. (2021) Recent development of hydrogen and fuel cell technologies: a review, Energy Rep. 7, 8421–8446. [CrossRef] [Google Scholar]
  • Bhattacharyya R., Singh K.K., Bhanja K., Grover R.B. (2024) Using electrolytic hydrogen production and energy storage for balancing a low carbon electricity grid: scenario assessments for India, Energy Clim. Change 5, 100131. [CrossRef] [Google Scholar]
  • Parente C., Teixeira F., Cerdeira J. (2024) Stakeholders’ perceptions of hydrogen and reflections on energy transition governance, Energy Sustain. Soc. 14, 1, 15. [CrossRef] [Google Scholar]
  • Megía P.J., Vizcaíno A.J., Calles J.A., Carrero A. (2021) Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review, Energy Fuels 35, 20, 16403–16415. [CrossRef] [Google Scholar]
  • Glenk G., Reichelstein S. (2019) Economics of converting renewable power to hydrogen, Nat. Energy 4, 3, 216–222. [CrossRef] [Google Scholar]
  • Dorn F.M. (2024) Towards a multi-color hydrogen production network? Competing imaginaries of development in northern Patagonia, Argentina, Energy Res. Soc. Sci. 110, 103457. [CrossRef] [Google Scholar]
  • Ishaq H., Dincer I., Crawford C. (2022) A review on hydrogen production and utilization: challenges and opportunities, Int. J. Hyd. Energy 47, 62, 26238–26264. [CrossRef] [Google Scholar]
  • Brandt A.R. (2023) Greenhouse gas intensity of natural hydrogen produced from subsurface geologic accumulations, Joule 7, 8, 1818–1831. [CrossRef] [Google Scholar]
  • Prinzhofer A., Tahara Cissé C.S., Diallo A.B. (2018) Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali), Int. J. Hyd. Energy 43, 42, 19315–19326. [CrossRef] [Google Scholar]
  • Boschee P. (2023) Comments: the new “Gold Rush” hunts for subsurface hydrogen, J. Petrol. Technol. 75, 11, 10–11. [Google Scholar]
  • Gold H. (2023) Ramsay 2 update, in: Very High Hydrogen Concentrations up to 86% Purity Found Along with the Very High Helium Concentrations, Australian Stock Exchange. [Google Scholar]
  • Stalker L., Talukder A., Strand J., Josh M., Faiz M. (2022) Gold (hydrogen) rush: risks and uncertainties in exploring for naturally occurring hydrogen, APPEA J. 62, 361–380. [CrossRef] [Google Scholar]
  • Moretti I., Geymond U., Pasquet G., Aimar L., Rabaute A. (2022) Natural hydrogen emanations in Namibia: field acquisition and vegetation indexes from multispectral satellite image analysis, Int. J. Hyd. Energy 47, 84, 35588–35607. [CrossRef] [Google Scholar]
  • Moretti I., Brouilly E., Loiseau K., Prinzhofer A., Deville E. (2021) Hydrogen emanations in intracratonic areas: new guide lines for early exploration basin screening, Geosciences 11, 3, 145. [CrossRef] [Google Scholar]
  • Lévy D., Roche V., Pasquet G., Combaudon V., Geymond U., Loiseau K., Moretti I. (2023) Natural H 2 exploration: tools and workflows to characterize a play, Sci. Technol. Energy Trans. 78, 27. [Google Scholar]
  • Zgonnik V. (2020) The occurrence and geoscience of natural hydrogen: a comprehensive review, Earth-Sci. Rev. 203, 103140. [CrossRef] [Google Scholar]
  • Frery E., Langhi L., Maison M., Moretti I. (2021) Natural hydrogen seeps identified in the North Perth Basin, Western Australia, Int. J. Hyd. Energy 46, 61, 31158–31173. [CrossRef] [Google Scholar]
  • Mainson M., Heath C., Pejcic B., Frery E. (2022) Sensing hydrogen seeps in the subsurface for natural hydrogen exploration, Appl. Sci. 12, 13, 6383. [CrossRef] [Google Scholar]
  • Prinzhofer A., Moretti I., Francolin J., Pacheco C., D’Agostino A., Werly J., Rupin F. (2019) Natural hydrogen continuous emission from sedimentary basins: the example of a Brazilian H2-emitting structure, Int. J. Hyd. Energy 44, 5676–5685. [CrossRef] [Google Scholar]
  • Moretti I., Prinzhofer A., Françolin J., Pacheco C., Rosanne M., Rupin F., Mertens J. (2021) Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions, Int. J. Hyd. Energy 46, 5, 3615–3628. [CrossRef] [Google Scholar]
  • Cathles L., Prinzhofer A. (2020) What pulsating H2 emissions suggest about the H2 resource in the Sao Francisco Basin of Brazil, Geosciences 10, 149. [CrossRef] [Google Scholar]
  • Aimar L., Frery E., Strand J., Heath C., Khan S., Moretti I., Ong C. (2023) Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western Australia, Front. Earth Sci. 11, 14. [CrossRef] [Google Scholar]
  • Zgonnik V., Beaumont V., Deville E., Larin N., Pillot D., Farrell K.M. (2015) Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA), Prog. Earth Planet. Sci. 2, 1, 31. [CrossRef] [Google Scholar]
  • Smithies R.H., Witt W.K. (1997) Distinct basement terranes identified from granite geochemistry in late Archaean granite-greenstones, Yilgarn Craton, Western Australia, Precambr. Res. 83, 185–201. [CrossRef] [Google Scholar]
  • Rowe M., Kemp A., Wingate M., Petersson A., Whitehouse M., Riet C. (2022) Cratonisation of Archaean continental crust: insights from U-Pb zircon geochronology and geochemistry of granitic rocks in the Narryer Terrane, northwest Yilgarn Craton, Precambr. Res. 372, 106609. [CrossRef] [Google Scholar]
  • Tucker N., Hammerli J., Kemp A., Rowe M., Gray C., Jeon H., Whitehouse M., Roberts M. (2024) Ultrahigh thermal gradient granulites in the Narryer Terrane, Yilgarn Craton, Western Australia, provide a window into the composition and formation of Archean lower crust, J. Metamorph. Geol. 42, 4, 425–470. [CrossRef] [Google Scholar]
  • Chen S., Riganti A., Wyche S., Greenfield J., Nelson D. (2003) Lithostratigraphy and tectonic evolution of contrasting greenstone successions in the central Yilgarn Craton, Western Australia, Precambr. Res. 127, 249–266. [CrossRef] [Google Scholar]
  • Bourne B., Trench A., Dentith M., Ridley J. (1993) Physical property variations within Archaean granite-greenstone Terrane of the Yilgarn Craton, Western Australia: the influence of metamorphic grade, Explor. Geophys. 24, 4, 367–374. [CrossRef] [Google Scholar]
  • Calvert A.J., Doublier M.P. (2018) Archaean continental spreading inferred from seismic images of the Yilgarn Craton, Nat. Geosci. 11, 7, 526–530. [CrossRef] [Google Scholar]
  • Swager C., Goleby B., Drummond B.J., Rattenbury M.S., Williams P.R. (1997) Crustal structure of granite-greenstone terranes in the Eastern Goldfields, Yilgarn Craton, as revealed by seismic reflection profiling, Precambrian Res. 83, 43–56. [CrossRef] [Google Scholar]
  • Anand R.R., Paine M. (2002) Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration, Aust. J. Earth Sci. 49, 1, 3–162. [CrossRef] [Google Scholar]
  • Mulder J.A., Nebel O., Gardiner N.J., Cawood P.A., Wainwright A.N., Ivanic T.J. (2021) Crustal rejuvenation stabilised Earth’s first cratons, Nat. Commun. 12, 1, 3535. [CrossRef] [Google Scholar]
  • Deshon M. (2001) Groundwater study of the Wongan Hills townsite, in: Resource management technical reports. Department of Primary Industries and Regional Development, Western Australia, p. 38. [Google Scholar]
  • Davies K., Esteban L., Keshavarz A., Iglaeur S. (2024) Advancing natural hydrogen exploration: headspace gas analysis in water-logged environments, Energy Fuels 38, 2010–2017. [Google Scholar]
  • Halas P., Dupuy A., Franceschi M., Bordmann V., Fleury J.-M., Duclerc D. (2021) Hydrogen gas in circular depressions in South Gironde, France: flux, stock, or artefact?, Appl. Geochem. 127, 104928. [CrossRef] [Google Scholar]
  • Air-met S. (2012) GA5000 portable gas analyser landfill & contaminated land specification sheet, Air-Met Scientific Pty Ltd., p. 4. https://www.airmet.com.au/assets/documents/product/301/GA5000-Datasheet.pdf [Google Scholar]
  • Industrial S. (2019) Gas detection and monitoring solutions iBrid MX6 product specifications, in: Internal Report, I. Scientific, Editor. Industrial Scientific, p. 51. https://www.indsci.com/en/. [Google Scholar]
  • SGX. (2009) EC4-100-H2S hydrogen sulfide electrochemical sensor, S.S. Ltd, Editor, p. 2. [Google Scholar]
  • SGX. (2009) EC4-1000-H2 Hydrogen Electrochemical Sensor, S.S. Ltd, Editor, p. 2. [Google Scholar]
  • SGX. (2018) Integrated IR datasheet, S.S. Ltd, Editor, p. 9. [Google Scholar]
  • Suleimenov O.M., Krupp R.E. (1994) Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320°C and at saturation pressures, Geochim. Cosmochim. Acta 58, 11, 2433–2444. [CrossRef] [Google Scholar]
  • Laemmel T., Mohr M., Schack-Kirchner H., Schindler D., Maier M. (2017) Direct observation of wind-induced pressure-pumping on gas transport in soil, Soil Sci. Soc. Am. J. 81, 4, 770–774. [CrossRef] [Google Scholar]
  • Laemmel T., Mohr M., Longdoz B., Schack-Kirchner H., Lang F., Schindler D., Maier M. (2019) From above the forest into the soil – how wind affects soil gas transport through air pressure fluctuations, Agric. For. Meteorol. 265, 424–434. [CrossRef] [Google Scholar]
  • Massman W.J., Frank J.M. (2022) Modeling gas flow velocities in soils induced by variations in surface pressure, heat, and moisture dynamics, J. Adv. Model. Earth Syst. 14, 10, e2022MS003086. [CrossRef] [Google Scholar]
  • Bahlmann L.M., Smits K.M., Heck K., Coltman E., Helmig R., Neuweiler I. (2020) Gas component transport across the soil-atmosphere interface for gases of different density: experiments and modeling, Water Resour. Res. 56, 9, e2020WR027600. [CrossRef] [Google Scholar]
  • Buckingham E. (1904) Contributions to our knowledge of the aeration of soils. U.S. Dept. of Agriculture, Bureau of Soils, Washington, D.C. [Google Scholar]
  • Su Z., Wu B., Gong Y. (2015) Determination of gas diffusion coefficient in soils with different porosities, Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 31, 108–113. [Google Scholar]
  • Neira J., Ortiz M., Morales L., Acevedo E. (2015) Oxygen diffusion in soils: understanding the factors and processes needed for modeling, Chilean J. Agric. Res. 75, 35–44. [CrossRef] [Google Scholar]
  • Etiope G., Martinelli G. (2002) Migration of carrier and trace gases in the geosphere: an overview, Phys. Earth Planet. Interiors 129, 3, 185–204. [CrossRef] [Google Scholar]
  • Forde O.N., Cahill A.G., Beckie R.D., Mayer K.U. (2019) Barometric-pumping controls fugitive gas emissions from a vadose zone natural gas release, Sci. Rep. 9, 1, 14080. [CrossRef] [Google Scholar]
  • Cheng Q., Zhang M., Jin H., Ren Y. (2022) Spatiotemporal variation characteristics of hourly soil temperature in different layers in the low-latitude plateau of China, Front. Environ. Sci. 10, 1091985. [CrossRef] [Google Scholar]
  • Horton B., Corkrey R. (2011) A weighted coefficient model for estimation of Australian daily soil temperature at depths of 5 cm to 100 cm based on air temperature and rainfall, Soil Res. 49, 305–314. [CrossRef] [Google Scholar]
  • Zeng Y., Su Z., Wan L., Yang Z., Zhang T., Tian H., Shi X., Wang X., Cao W. (2009) Diurnal pattern of the drying front in desert and its application for determining the effective infiltration, Hydrol. Earth Syst. Sci. 13, 6, 703–714. [CrossRef] [Google Scholar]
  • Pan B., Yin X., Ju Y., Iglauer S. (2021) Underground hydrogen storage: influencing parameters and future outlook, Adv. Colloid Interface Sci. 294, 102473. [CrossRef] [Google Scholar]
  • Simon J., Fulton P., Prinzhofer A., Cathles L. (2020) Earth tides and H2 venting in the Sao Francisco Basin, Brazil, Geosciences 10, 414. [CrossRef] [Google Scholar]
  • Myagkiy A., Brunet F., Popov C., Krüger R., Guimarães H., Sousa R.S., Charlet L., Moretti I. (2020) H2 dynamics in the soil of a H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling, Appl. Geochem. 112, 104474. [CrossRef] [Google Scholar]
  • Beaubien S., Ruggiero L., Annunziatellis A., Bigi S., Ciotoli G., Deiana P., Graziani S., Lombardi S., Tartarello Maria C. (2014) The importance of baseline surveys of near-surface gas geochemistry for CCS monitoring, as shown from onshore case studies in Northern and Southern Europe, Oil Gas Sci. Technol. 70, 4, 615–633. [Google Scholar]
  • Beaubien S.E., et al. (2013) Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011, Int. J. Greenhouse Gas Control 16, S236–S262. [CrossRef] [Google Scholar]
  • Jones D.G., Barlow T., Beaubien S.E., Ciotoli G., Lister T.R., Lombardi S., May F., Möller I., Pearce J.M., Shaw R.A. (2009) New and established techniques for surface gas monitoring at onshore CO2 storage sites, Energy Proc. 1, 1, 2127–2134. [CrossRef] [Google Scholar]
  • Salmawati S., Sasaki K., Sugai Y., Nguele R. (2018) Characterization of natural soil CO2 flux: implication for leakage detection monitoring at CO2 geological sites, SSRN Electr. J. GHGT-14, 6. [Google Scholar]
  • Salmawati S., Sasaki K., Sugai Y., Yousefi-Sahzabi A. (2019) Estimating a baseline of soil CO2 flux at CO2 geological storage sites, Environ. Monit. Assess. 191, 9, 1–12. [CrossRef] [Google Scholar]
  • Carman C.H., Locke Ii R.A., Blakley C.S. (2014) Update on soil CO2 flux monitoring at the Illinois Basin – Decatur Project, USA, Energy Proc. 63, 3869–3880. [CrossRef] [Google Scholar]
  • Reimer G.M. (1979) The use of soil-gas helium concentrations for earthquake prediction: studies of factors causing diurnal variation, in: Open-File Report. [Google Scholar]
  • Camarda M., De Gregorio S., Capasso G., Di Martino R.M.R., Gurrieri S., Prano V. (2019) The monitoring of natural soil CO2 emissions: issues and perspectives, Earth-Sci. Rev. 198, 102928. [CrossRef] [Google Scholar]
  • Iglauer S., Ali M., Keshavarz A. (2020) Hydrogen wettability of sandstone reservoirs: implications for hydrogen geo-storage, Geophys. Res. Lett. 48, 3, 90814. [Google Scholar]
  • Strauch B., Pilz P., Hierold J., Zimmer M. (2023) Experimental simulations of hydrogen migration through potential storage rocks, Int. J. Hyd. Energy 48, 66, 25808–25820. [CrossRef] [Google Scholar]
  • Lodhia B.H., Peeters L. (2024) The migration of hydrogen in sedimentary basins, Aust. Energy Prod. J. 64, 1, 186–194. [CrossRef] [Google Scholar]
  • Salmawati S., Sasaki K., Sugai Y., Nguele R. (2018) Characterization of natural soil CO2 flux: implication for leakage detection monitoring at CO2 geological sites, in: GHGT-14, Melbourne, p. 6. [Google Scholar]
  • Schlömer S., Möller I., Furche M. (2014) Baseline soil gas measurements as part of a monitoring concept above a projected CO2 injection formation—a case study from Northern Germany, Int. J. Greenhouse Gas Control 20, 57–72. [CrossRef] [Google Scholar]
  • Verstraeten W.W., Veroustraete F., Feyen J. (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation, Sensors (Basel) 8, 1, 70–117. [CrossRef] [PubMed] [Google Scholar]
  • Wang H., Zhao R., Zhao D., Liu S., Fu J., Zhang Y., Dai N., Song D., Ding H. (2022) Microbial-mediated emissions of greenhouse gas from farmland soils: a review, Processes 10, 11, 14. [Google Scholar]
  • Boreham C.J., Edwards D.S., Czado K., Rollet N., Wang L., van der Wielen S., Champion D., Blewett R., Feitz A., Henson P.A. (2021) Hydrogen in Australian natural gas: occurrences, sources and resources, APPEA J. 61, 1, 163–191. [CrossRef] [Google Scholar]
  • Larin N., Zgonnik V., Rodina S., Deville E., Prinzhofer A., Larin V.N. (2015) Natural molecular hydrogen seepage associated with surficial, rounded depressions on the European Craton in Russia, Nat. Resour. Res. 24, 3, 369–383. [CrossRef] [Google Scholar]
  • Bourdet J., et al. (2023) Natural hydrogen in low temperature geofluids in a Precambrian granite, South Australia. Implications for hydrogen generation and movement in the upper crust, Chem. Geol. 638, 121698. [CrossRef] [Google Scholar]
  • Zhao M., Wang M., Zhao Y., Hu N., Qin L., Ren Z., Wang G., Jiang M. (2022) Soil microbial abundance was more affected by soil depth than the altitude in peatlands, Front. Microbiol. 13, 1068540. [CrossRef] [Google Scholar]
  • Su X., Zhao W., Xia D. (2018) The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam, Biotechnol. Biofuels 11, 1, 245. [CrossRef] [Google Scholar]
  • Hao J., Chai Y.N., Lopes L.D., Ordóñez R.A., Wright E.E., Archontoulis S., Schachtman D.P. (2021) The effects of soil depth on the structure of microbial communities in agricultural soils in Iowa, USA, Appl. Environ. Microbiol. 87, 4, e02673–20. [Google Scholar]
  • Pimentel M., Mathur R., Chang C. (2013) Gas and the microbiome, Curr. Gastroenterol. Rep. 15, 12, 356. [CrossRef] [PubMed] [Google Scholar]
  • Pander B., Mortimer Z., Woods C., McGregor C., Dempster A., Thomas L., Maliepaard J., Mansfield R., Rowe P., Krabben P. (2020) Hydrogen oxidising bacteria for production of single-cell protein and other food and feed ingredients, Eng. Biol. 4, 2, 21–24. [CrossRef] [Google Scholar]
  • Sinha P., Roy S., Das D. (2015) Role of formate hydrogen lyase complex in hydrogen production in facultative anaerobes, Int. J. Hyd. Energy 40, 29, 8806–8815. [CrossRef] [Google Scholar]
  • Lee H.-S., Vermaas W.F.J., Rittmann B.E. (2010) Biological hydrogen production: prospects and challenges, Trends Biotechnol. 28, 5, 262–271. [CrossRef] [Google Scholar]
  • Marriott R.A., Pirzadeh P., Marrugo-Hernandez J.J., Raval S. (2016) Hydrogen sulfide formation in oil and gas, Can. J. Chem. 94, 4, 406–413. [CrossRef] [Google Scholar]
  • Marshall D., Downes P.J., Ellis S., Greene R., Loughrey L., Jones P. (2016) Pressure–temperature–fluid constraints for the Poona Emerald deposits, Western Australia: fluid inclusion and stable isotope studies, MDPI Min. 6, 4, 22. [Google Scholar]
  • Nelson D.R. (1997) Evolution of the Archaean granite-greenstone terranes of the Eastern Goldfields, Western Australia: SHRIMP U⋅Pb zircon constraints, Precambrian Res. 83, 1, 57–81. [CrossRef] [Google Scholar]
  • Pidgeon R.T., Wilde S.A., Compston W., Shield M.W. (1990) Archaean evolution of the Wongan Hills Greenstone Belt, Yilgarn Craton, Western Australia, Aust. J. Earth Sci. 37, 3, 279–292. [CrossRef] [Google Scholar]
  • Hosgörmez H. (2007) Origin of the natural gas seep of Çirali (Chimera), Turkey: site of the first Olympic fire, J. Asian Earth Sci. 30, 1, 131–141. [CrossRef] [Google Scholar]
  • Abrajano T.A., Sturchio N.C., Bohlke J.K., Lyon G.L., Poreda R.J., Stevens C.M. (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin?, Chem. Geol. 71, 1, 211–222. [CrossRef] [Google Scholar]
  • Deville E., Prinzhofer A. (2016) The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia, Chem. Geol. 440, 139–147. [CrossRef] [Google Scholar]
  • Kelley D.S., et al. (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field, Science 307, 5714, 1428–1434. [NASA ADS] [CrossRef] [Google Scholar]
  • Brazelton W.J., Morrill P.L., Szponar N., Schrenk M.O. (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs, Appl. Environ. Microbiol. 79, 13, 3906–3916. [CrossRef] [PubMed] [Google Scholar]
  • Dodd M.S., et al. (2022) Abiotic anoxic iron oxidation, formation of Archean banded iron formations, and the oxidation of early Earth, Earth Planet. Sci. Lett. 584, 117469. [CrossRef] [Google Scholar]
  • Marty B. (2011) Mantle volatiles, in: Encyclopedia of astrobiology, M. Gargaud, et al., Editors, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 959–960. [CrossRef] [Google Scholar]
  • Sutton J., Tamar E. (2014) One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory, in: Characteristics of Hawaiian Volcanoes, M. Poland, T.J. Takahashi, C. Landowski, Editors, United States Geological Survey: U.S. Geological Survey Professional Paper 1801, pp. 295–320. [Google Scholar]
  • Marty B., Tolstikhin I.N. (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes, Chem. Geol. 145, 3, 233–248. [CrossRef] [Google Scholar]
  • Konn C., Charlou J.L., Holm N.G., Mousis O. (2015) The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge, Astrobiology 15, 5, 381–399. [CrossRef] [PubMed] [Google Scholar]
  • Zhou X., Shen Y., Zhang H., Song C., Li J., Liu Y. (2015) Hydrochemistry of the natural low pH groundwater in the coastal aquifers near Beihai, China, J. Ocean Univ. China 14, 3, 475–483. [CrossRef] [Google Scholar]
  • Burton M., Sawyer G., Granieri D. (2013) Deep carbon emissions from Volcanoes, Rev. Mineral. Geochem. 75, 323–354. [CrossRef] [Google Scholar]
  • Yonemura S., Yokozawa M., Shirato Y., Nishimura S., Nouchi I. (2009) Soil CO2 concentrations and their implications in conventional and no-tillage agricultural fields, J. Agric. Meteorol. 65, 141–149. [CrossRef] [Google Scholar]
  • Parnell J., Blamey N. (2017) Global hydrogen reservoirs in basement and basins, Geochem. Trans. 18, 1, 2. [CrossRef] [Google Scholar]
  • Mavrogenes J.A., Bodnar R.J. (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications, Geochim. Cosmochim. Acta 58, 1, 141–148. [CrossRef] [Google Scholar]
  • Goscombe B., Foster D.A., Blewett R., Czarnota K., Wade B., Groenewald B., Gray D. (2019) Neoarchaean metamorphic evolution of the Yilgarn Craton: a record of subduction, accretion, extension and lithospheric delamination, Precambrian Res. 335, 105441. [CrossRef] [Google Scholar]
  • Dentith M., Aitken A., Evans S., Joly A. (2013) Regional mineral exploration targeting for gold and nickel deposits using crustal electrical conductivity variations determined using the magnetotelluric method, in: ASEG Extended Abstracts, p. 1. [CrossRef] [Google Scholar]
  • Reading A., Kennett B., Dentith M. (2003) Seismic structure of the Yilgarn Craton, Western Australia, Aust. J. Earth Sci. 50, 427–438. [CrossRef] [Google Scholar]
  • Weber U.D., Kohn B.P., Gleadow A.J.W., Nelson D.R. (2005) Low temperature Phanerozoic history of the Northern Yilgarn Craton, Western Australia, Tectonophysics 400, 1, 127–151. [CrossRef] [Google Scholar]
  • Warr O., Giunta T., Ballentine C.J., Sherwood Lollar B. (2019) Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments, Chem. Geol. 530, 119322. [CrossRef] [Google Scholar]
  • Bouquet A., Glein C.R., Wyrick D., Waite J.H. (2017) Alternative energy: production of H2 by radiolysis of water in the Rocky Cores of icy bodies, Astrophys. J. Lett. 840, 1, L8. [Google Scholar]
  • Donze F., Truche L., Namin P., Lefeuvre N., Bazarkina E. (2020) Migration of natural hydrogen from deep-seated sources in the São Francisco Basin, Brazil, Geosciences 10, 16. [Google Scholar]
  • Dzaugis M.E., Spivack A.J., Dunlea A.G., Murray R.W., D’Hondt S. (2016) Radiolytic hydrogen production in the subseafloor basaltic aquifer, Front. Microbiol. 7, 76. [CrossRef] [Google Scholar]
  • Milkov A.V. (2022) Molecular hydrogen in surface and subsurface natural gases: abundance, origins and ideas for deliberate exploration, Earth-Sci. Rev. 230, 104063. [CrossRef] [Google Scholar]
  • Liao D., Feng D., Luo J., Yun X. (2023) Relationship between radiogenic heat production in granitic rocks and emplacement age, Energy Geosci. 4, 4, 100157. [CrossRef] [Google Scholar]
  • Cullen R. (2023) Exploration update september 2023, in: ASZ Release, C.R.P. Ltd, Editor, p. 17. [Google Scholar]
  • Bepari M.I., Meesungnoen J., Jay-Gerin J.-P. (2023) Early and transient formation of highly acidic pH spikes in water radiolysis under the combined effect of high dose rate and high linear energy transfer, Radiation 3, 3, 165–182. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.