Issue
Sci. Tech. Energ. Transition
Volume 79, 2024
Synthesis and characterisation of porous materials for clean energy applications
Article Number 31
Number of page(s) 15
DOI https://doi.org/10.2516/stet/2024023
Published online 06 June 2024
  • Adler P.M. (1992) Porous media: geometry and transports, Butterworth-Heineman, Boston, MA, p. 544. [Google Scholar]
  • Dullien F.A.L. (1979) Porous media: fluid transport and pore structure, Academic press. [Google Scholar]
  • Raybaud P., Toulhoat H. (2013) Catalysis by transition metal sulphides: From molecular theory to industrial application, Editions Technip. [Google Scholar]
  • Carman P.C. (1937) Fluid flow through granular beds, Trans. Inst. Chem. Eng. 15, 150–166. [Google Scholar]
  • Clennell M.B. (1997) Tortuosity: a guide through the maze, Geol. Soc. Spec. Publ. 122, 1, 299–344. [CrossRef] [Google Scholar]
  • Fu J., Thomas H.R., Li C. (2021) Tortuosity of porous media: image analysis and physical simulation, Earth-Sci. Rev. 212, 103439. [CrossRef] [Google Scholar]
  • Ghanbarian B., Hunt A.G., Ewing R.P., Sahimi M. (2013) Tortuosity in porous media: a critical review, Soil Sci. Soc. Am. J. 77, 5, 1461–1477. [CrossRef] [Google Scholar]
  • Bini F., Pica A., Marinozzi A., Marinozzi F. (2019) A 3D model of the effect of tortuosity and constrictivity on the diffusion in mineralized collagen fibril, Sci. Rep. UK 9, 1, 2658. [CrossRef] [Google Scholar]
  • Van Brakel J., Heertjes P.M. (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor, Int. J. Heat Mass Tranf. 17, 9, 1093–1103. [CrossRef] [Google Scholar]
  • Balberg I., Anderson C.H., Alexander S., Wagner N. (1984) Excluded volume and its relation to the onset of percolation, Phys. Rev. B 30, 7, 3933. [CrossRef] [Google Scholar]
  • Jouannot-Chesney P., Jernot J.-P., Lantuéjoul C. (2017) Percolation transition and topology, Image Anal. Stereol. 36, 95–103. [Google Scholar]
  • Petersen E.E. (1958) Diffusion in a pore of varying cross section, AIChE J. 4, 3, 343–345. [CrossRef] [Google Scholar]
  • Tran V.-D., Moreaud M., Thiébaut E., Denis L., Becker J.-M. (2014) Inverse problem approach for the alignment of electron tomographic series, Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles 69, 2, 279–291. [CrossRef] [Google Scholar]
  • Chaniot J., Moreaud M., Sorbier L., Becker J.-M., Fournel T. (2019) Tortuosimetric operator for complex porous media characterization, Image Anal. Stereol. 38, 1, 25–41. [CrossRef] [MathSciNet] [Google Scholar]
  • Chaniot J., Moreaud M., Sorbier L., Jeulin D., Becker J.-M., Fournel T. (2020) Heterogeneity assessment based on average variations of morphological tortuosity for complex porous structures characterization, Image Anal. Stereol. 39, 2, 111–128. [MathSciNet] [Google Scholar]
  • Stenzel O., Pecho O., Holzer L., Neumann M., Schmidt V. (2016) Predicting effective conductivities based on geometric microstructure characteristics, AIChE J. 62, 5, 1834–1843. [CrossRef] [Google Scholar]
  • Lantuéjoul C., Beucher S. (1981) On the use of the geodesic metric in image analysis, J. Microsc. 121, 1, 39–49. [Google Scholar]
  • Decker L., Jeulin D., Tovena I. (1998) 3D morphological analysis of the connectivity of a porous medium, Acta Stereol. 17, 1. [Google Scholar]
  • Saha P.K., Borgefors G., di Baja G.S. (2016) A survey on skeletonization algorithms and their applications, Pattern Recogn. Lett. 76, 3–12. [CrossRef] [Google Scholar]
  • Peyrega C., Jeulin D. (2013) Estimation of tortuosity and reconstruction of geodesic paths in 3D, Image Anal. Stereol. 32, 1, 27–43. [CrossRef] [MathSciNet] [Google Scholar]
  • Berrocal C.G., Löfgren I., Lundgren K., Görander N., Halldén C. (2016) Characterisation of bending cracks in R/FRC using image analysis, Cement Concrete Res. 90, 104–116. [CrossRef] [Google Scholar]
  • Gommes C.J., Bons A.-J., Blacher S., Dunsmuir J.H., Tsou A.H. (2009) Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions, AIChE J. 55, 8, 2000–2012. [CrossRef] [Google Scholar]
  • Boudreau B.P. (1996) The diffusive tortuosity of fine-grained unlithified sediments, Geochim. Cosmochim. Acta 60, 16, 3139–3142. [CrossRef] [Google Scholar]
  • Moreaud M., Celse B., Tihay F. (2008) Analysis of the accessibility of macroporous alumino-silicate using 3D-TEM images, in: Vol. 8 of Proceedings of Materials Science & Technology 2008 Conference and Exhibition: MS&T, pp. 1153–1164. [Google Scholar]
  • Batista A.T.F., Baaziz W., Taleb A.-L., Chaniot J., Moreaud M., Legens C., Aguilar-Tapia A., Proux O., Hazemann J.-L., Diehl F., Chizallet C., Gay A.-S., Ersen O., Raybaud P. (2020) Atomic scale insight into the formation, size and location of platinum nanoparticles supported on γ-alumina, ACS Catal. 10, 7, 4193–4204. [CrossRef] [Google Scholar]
  • Caflisch R.E. (1998) Monte Carlo and quasi-Monte Carlo methods, Acta Numer. 7, 1–49. [CrossRef] [Google Scholar]
  • Hammoumi A., Moreaud M., Jolimaitre E., Chevalier T., Novikov A., Klotz M. (2021) Graph-based M-tortuosity estimation, in: Discrete Geometry and Mathematical Morphology, J. Lindblad, F. Malmberg, N. Sladoje (eds), Lecture Notes in Computer Science, Springer, Cham, pp. 416–428. [CrossRef] [MathSciNet] [Google Scholar]
  • Chaniot J., Moreaud M., Sorbier L., Becker J.-M., Fournel T. (2022) Scalable morphological accessibility of complex microstructures, Comp. Mater. Sci. 203, 111062. [CrossRef] [Google Scholar]
  • Allard J.F., Castagnede B., Henry M., Lauriks W. (1994) Evaluation of tortuosity in acoustic porous materials saturated by air, Rev. Sci. Instrum. 65, 3, 754–755. [CrossRef] [Google Scholar]
  • Johnson D.L., Plona T.J., Scala C., Pasierb F., Kojima H. (1982) Tortuosity and acoustic slow waves, Phys. Rev. Lett. 49, 25, 1840. [CrossRef] [Google Scholar]
  • Kingman J.F.C. (1992) Poisson processes, volume 3 of Oxford studies in probability, Clarendon Press, Oxford Science Publications. [CrossRef] [Google Scholar]
  • Jeulin D. (2012) Morphology and effective properties of multi-scale random sets: A review, C.R. Mecanique 340, 4–5, 219–229. [CrossRef] [Google Scholar]
  • Moreaud M., Chaniot J., Fournel T., Becker J.-M., Sorbier L. (2018) Multi-scale stochastic morphological models for 3D complex microstructures, in: 2018 17th Workshop on Information Optics (WIO), IEEE, Quebec, Canada, pp. 1–3. [Google Scholar]
  • Wang H., Pietrasanta A., Jeulin D., Willot F., Faessel M., Sorbier L., Moreaud M. (2015) Modelling mesoporous alumina microstructure with 3D random models of platelets, J. Microsc. 260, 3, 287–301. [CrossRef] [PubMed] [Google Scholar]
  • plug im! (2018) An open access and customizable software for signal and image processing. Available at https://www.plugim.fr. [Google Scholar]
  • Chiu S.N., Stoyan D., Kendall W.S., Mecke J. (2013) Stochastic geometry and its applications, John Wiley & Sons. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.