Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Article Number 21
Number of page(s) 10
Published online 25 August 2023
  • Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hackett L.A., Hallett J.P., Herzog H.J., Jackson G., Kemper J., Krevor S., Maitland G.C., Matuszewski M., Metcalfe I.S., Petit C., Puxty G., Reimer J., Reiner D.M., Rubin E.S., Scott S.A., Shah N., Smit B., Trusler J.P.M., Webley P., Wilcox J., Dowell N.M. (2018) Carbon capture and storage (CCS): the way forward, Energy Environ. Sci. 11, 5, 1062–1176. [CrossRef] [Google Scholar]
  • Li H., Jiang H.-D., Yang B., Liao H. (2019) An analysis of research hotspots and modeling techniques on carbon capture and storage, Sci. Total Environ. 687, 687–701. [CrossRef] [Google Scholar]
  • Solomon S. (2006) Carbon dioxide storage: geological security and environmental issues – case study on the Sleipner gas field in Norway, The Bellona Foundation, Oslo, Norway. [Google Scholar]
  • Li Q., Liu G., Liu X., Li X. (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project, Int. J. Greenh. Gas Control 17, 504–514. [CrossRef] [Google Scholar]
  • Taquet N. (2012) Monitoring Geochimique de la geosphère et de l’atmosphère : application au stockage geologique du CO2. [Google Scholar]
  • Monne J., Prinet C. (2013) Lacq–Rousse industrial CCS reference project: description and operational feedback after two and half years of operation, Energy Procedia 37, 6444–6457. [CrossRef] [Google Scholar]
  • Rübel A.P., Sonntag C., Lippmann J., Pearson F.J., Gautschi A. (2002) Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland, Geochim. Cosmochim. Acta 66, 8, 1311–1321. [CrossRef] [Google Scholar]
  • Vinsot A., Appelo C.A.J., Cailteau C., Wechner S., Pironon J., De Donato P., De Cannière P., Mettler S., Wersin P., Gäbler H.-E. (2008) CO2 data on gas and pore water sampled in situ in the Opalinus Clay at the Mont Terri rock laboratory, Phys. Chem. Earth Parts A/B/C 33, S54–S60. [CrossRef] [Google Scholar]
  • Gaucher E.C., Tournassat C., Pearson F.J., Blanc P., Crouzet C., Lerouge C., Altmann S. (2009) A robust model for pore-water chemistry of clayrock, Geochim. Cosmochim. Acta 73, 21, 6470–6487. [CrossRef] [Google Scholar]
  • Bossart P., Bernier F., Birkholzer J., Bruggeman C., Connolly P., Dewonck S., Fukaya M., Herfort M., Jensen M., Matray J.-M., Mayor J.C., Moeri A., Oyama T., Schuster K., Shigeta N., Vietor T., Wieczorek K. (2017) Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments, Swiss J. Geosci. 110, 1, 3–22. [CrossRef] [Google Scholar]
  • Laier T., Øbro H. (2009) Environmental and safety monitoring of the natural gas underground storage at Stenlille, Denmark, Geol. Soc. Spec. Publ. 313, 1, 81–92. [CrossRef] [Google Scholar]
  • de Donato P., Pironon J., Mouronval G., Hy-Billiot J., Garcia B., Lucas H., Pokryszka Z., Lafortune S., Flamant P.H., Cellier P., Gal F., Pierres K.M.-L., Pierres K.L., Taquet N., Barres O. (2010) SENTINELLE. Development of combined geochemical monitoring on Lacq pilot site from geosphere to atmosphere, in: 10th International Conference on Greenhouse Gas Control Technologies (GHGT 10), September 2010, Amsterdam, Netherlands. [Google Scholar]
  • Cailteau C., Pironon J., de Donato P., Vinsot A., Fierz T., Garnier C., Barres O. (2011) FT-IR metrology aspects for on-line monitoring of CO 2 and CH 4 in underground laboratory conditions, Anal. Methods 3, 4, 877–887. [CrossRef] [Google Scholar]
  • Taquet N., Pironon J., de Donato P., Lucas H., Barres O. (2013) Efficiency of combined FTIR and Raman spectrometry for online quantification of soil gases: application to the monitoring of carbon dioxide storage sites, Int. J. Greenh. Gas Control 12, 359–371. [CrossRef] [Google Scholar]
  • Dubessy J., Poty B., Ramboz C. (1989) Advances in C–O–H–N–S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions, Eur. J. Mineral. 1, 517–534. [CrossRef] [Google Scholar]
  • Cailteau C., de Donato P., Pironon J., Vinsot A., Garnier C., Barres O. (2011) In situ gas monitoring in clay rocks: mathematical developments for CO2 and CH4 partial pressure determination under non-controlled pressure conditions using FT-IR spectrometry, Anal. Methods 3, 4, 888–895. [CrossRef] [Google Scholar]
  • Gal F., Michel K., Pokryszka Z., Lafortune S., Garcia B., Rouchon V., de Donato P., Pironon J., Barres O., Taquet N., Radilla G., Prinet C., Hy-Billiot J., Lescanne M., Cellier P., Lucas H., Gibert F. (2014) Study of the environmental variability of gaseous emanations over a CO2 injection pilot – application to the French Pyrenean foreland, Int. J. Greenh. Gas Control 21, 177–190. [CrossRef] [Google Scholar]
  • Lacroix E., de Donato P., Lafortune S., Caumon M.-C., Barres O., Liu X., Derrien M., Piedevache M. (2021) In situ continuous monitoring of dissolved gases (N2, O2, CO2, H2) prior to H2 injection in an aquifer (Catenoy, France) by on-site Raman and infrared spectroscopies: instrumental assessment and geochemical baseline establishment, Anal. Methods 13, 3806–3820. [CrossRef] [PubMed] [Google Scholar]
  • Lloyd J., Taylor J.A. (1994) On the temperature dependence of soil respiration, Funct. Ecol. 8, 3, 315–323. [CrossRef] [Google Scholar]
  • Angert A., Yakir D., Rodeghiero M., Preisler Y., Davidson E.A., Weiner T. (2015) Using O2 to study the relationships between soil CO2 efflux and soil respiration, Biogeosciences 12, 7, 2089–2099. [CrossRef] [Google Scholar]
  • Barba J., Cueva A., Bahn M., Barron-Gafford G.A., Bond-Lamberty B., Hanson P.J., Jaimes A., Kulmala L., Pumpanen J., Scott R.L., Wohlfahrt G., Vargas R. (2018) Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements, Agric. For. Meteorol. 249, 434–443. [CrossRef] [Google Scholar]
  • Adisaputro D., De Donato P., Saint-Andre L., Barres O., Galy C., Nourrisson G., Piedevache M., Derrien M. (2021) Baseline subsoil CO2 gas measurements and micrometeorological monitoring: above canopy turbulence effects on the subsoil CO2 dynamics in temperate deciduous forest, Appl. Sci. 11, 4, 1753. [CrossRef] [Google Scholar]
  • Henry W., Banks J. (1803) III. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Philos. Trans. R. Soc. London 93, 29–274. [CrossRef] [Google Scholar]
  • Vinsot A., Appelo C.A.J., Lundy M., Wechner S., Cailteau-Fischbach C., de Donato P., Pironon J., Lettry Y., Lerouge C., De Cannière P. (2017) Natural gas extraction and artificial gas injection experiments in Opalinus Clay, Mont Terri rock laboratory (Switzerland), Swiss J. Geosci. 110, 1, 375–390. [CrossRef] [Google Scholar]
  • Le, V.-H.; Pironon, J.; De Donato, P.; Piedevache, Médéric; Randi, A.; Lorgeoux, C.; Caumon, M.-C. and Barres, O.: In-situ monitoring of dissolved gases within flooded borehole by multiples techniques (Raman, FTIR, micro-GC). Assessing of the gas membrane transfer equilibrium, (in prep.). [Google Scholar]
  • Mackay D., Shiu W.Y. (1981) A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data 10, 4, 1175–1199. [CrossRef] [Google Scholar]
  • Pasteris J.D., Wopenka B., Seitz J.C. (1988) Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions, Geochim. Cosmochim. Acta 52, 5, 979–988. [CrossRef] [Google Scholar]
  • Schrötter H.W., Klöckner H.W. (1979) Raman scattering cross section in gases and liquids, in: Weber A. (Ed.), Raman spectroscopy of gases and liquids, topics in current physics. Springer Berlin Heidelberg, Berlin, pp. 123–164. [CrossRef] [Google Scholar]
  • Burke E.A.J. (2001) Raman microspectrometry of fluid inclusions, Lithos 55, 1, 139–158. [CrossRef] [Google Scholar]
  • Le V.-H., Caumon M.-C., Tarantola A., Randi A., Robert P., Mullis J. (2019) Quantitative measurements of composition, pressure and density of micro-volumes of CO2–N2 gas mixtures by Raman spectroscopy, Anal. Chem. 91, 22, 14359–14367. [CrossRef] [PubMed] [Google Scholar]
  • Le V.-H., Caumon M.-C., Tarantola A., Randi A., Robert P., Mullis J. (2020) Calibration data for simultaneous determination of P–V–X properties of binary and ternary CO2–CH4–N2 gas mixtures by Raman spectroscopy over 5–600 bar: application to natural fluid inclusions, Chem. Geol. 552, 119783. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.