Issue
Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Article Number 20
Number of page(s) 19
DOI https://doi.org/10.2516/stet/2023016
Published online 14 August 2023
  • Anderson A.C., Reese W., Wheatley J.C. (1963) Specific heat, entrropy, and expansion coefficient of liquid helium 3, Phys. Rev. 130, 495–501. [CrossRef] [Google Scholar]
  • Alabdulkarem A., Hwang Y., Radermacher R. (2012) Development of CO2 liquefaction cycles for CO2 sequestration, Appl. Therm. Eng. 33, 144–156. [CrossRef] [Google Scholar]
  • Maytal B.Z., Pfotenhauer J.M. (2013) Miniature Joule–Thomson cryocooling, in: Principles and Practice, International Cryogenics Monograph Series, Springer. [Google Scholar]
  • Ullrich A., Eggers R. (2004) Hydrate formation during pressure release of wet CO2, view-cell observations, Chem. Eng. Technol. 27, 583–588. [CrossRef] [Google Scholar]
  • Nichita D.V., Bessieres D., Daridon J.L. (2008) Calculation of Joule–Thomson inversion curves for multiphase systems with waxy solid-phase precipitation, Energy Fuels 22, 4012–4018. [CrossRef] [Google Scholar]
  • Nichita D.V., Pauly J., Daridon J.L. (2009) Joule–Thomson inversion in vapor–liquid–solid solution systems, Int. J. Thermophys. 30, 1130–1143. [CrossRef] [Google Scholar]
  • Thirumaleshwar M., Richardson R.N. (1994) Enhancement of J–T cooling using multi-component mixtures, Cryogenics 34, 123–125. [CrossRef] [Google Scholar]
  • Oldenburg C.M. (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs, Energy Convers. Manag. 48, 1808–1815. [CrossRef] [Google Scholar]
  • Mathias S.A., McElwaine J.N., Gluyas J.G. (2014) Heat transport and pressure buildup during carbon dioxide injection into depleted gas reservoirs, J. Fluid Mech. 756, 89–109. [CrossRef] [MathSciNet] [Google Scholar]
  • Gauteplass J., Almenningen S., Ersland G., Barth T. (2018) Hydrate seal formation during laboratory CO2 injection in a cold aquifer, Int. J. Greenh. Gas Control 78, 21–26. [CrossRef] [Google Scholar]
  • Lagache M., Ungerer P., Boutin A., Fuchs A.H. (2001) Prediction of thermodynamic derivative properties of fluids by Monte Carlo simulation, Phys. Chem. Chem. Phys. 3, 4333–4339. [CrossRef] [Google Scholar]
  • Kortekaas W.G., Peters C.J., de Swaan Arons J. (1997) Joule–Thomson expansion of high-pressure-high-temperature gas condensates, Fluid Phase Equilib. 139, 205–218. [CrossRef] [Google Scholar]
  • Nichita D.V., Leibovici C.F. (2006) Calculation of Joule–Thomson inversion curves for two-phase mixtures, Fluid Phase Equilib. 246, 167–176. [CrossRef] [Google Scholar]
  • Sychev V.V. (1983) The differential equations of thermodynamics, MIR Editions. [MathSciNet] [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich–Kwong equation of state, Chem. Eng. Sci. 27, 1197–1203. [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fund. 15, 59–64. [CrossRef] [Google Scholar]
  • Robinson D.B., Peng D.Y. (1978) The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs, Research Report RR-28, Gas Processors Association. [Google Scholar]
  • Nichita D.V., Khalid P., Broseta D. (2010) Calculation of isentropic compressibility and sound velocity in two-phase fluids, Fluid Phase Equilib. 291, 95–102. [CrossRef] [Google Scholar]
  • Leibovici C.F., Nichita D.V. (2007) Parametric generation of single-phase properties (PT curves) for most cubic equations of state and any mixing rules, Chem. Eng. Commun. 194, 648–655. [CrossRef] [Google Scholar]
  • Nichita D.V., Leibovici C.F. (2011) Parametric construction of characteristic curves, Fluid Phase Equilib. 300, 83–88. [CrossRef] [Google Scholar]
  • Riazi M.R. (2005) Characterization and properties of petroleum fractions, 1st edn., Vol. 50, ASTM International, Philadelphia, PA, pp. 242, 246. [Google Scholar]
  • Kesler M.G., Lee B.I. (1976) Improved prediction of enthalpy of fractions, Hydrocarb. Process. 55, 153–158. [Google Scholar]
  • Stenby E.H., Christensen J.R., Knudsen K., Leibovici C. (1996) Application of a delumping procedure to compositional reservoir simulations, SPE-36744-MS, SPE Annual, Technical Conference and Exhibition, October 1996, Denver, Colorado. https://doi.org/10.2118/36744-MS. [Google Scholar]
  • Nojabaei B., Johns R.T., Chu L. (2013) Effect of capillary pressure on phase behavior in tight rocks and shales, SPE Res. Eval. Eng. 16, 281–289. [CrossRef] [Google Scholar]
  • Sherafati M., Jessen K. (2017) Stability analysis for multicomponent mixtures including capillary pressure, Fluid Phase Equilib. 433, 56–66. [CrossRef] [Google Scholar]
  • Riazi M.R., Al-Sahhaf T.A. (1996) Physical properties of heavy petroleum fractions and crude oils, Fluid Phase Equilib. 117, 217–224. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.