Sci. Tech. Energ. Transition
Volume 78, 2023
Characterization and Modeling of the Subsurface in the Context of Ecological Transition
Article Number 22
Number of page(s) 17
Published online 29 August 2023
  • Schneider F., Burrus J., Wolf S. (1993) Modelling overpressures by effectivestress/porosity relationships in low-permeability rocks: empirical artifice or physical reality, Norwegian Pet. Soc. Spec. Publ. 3, 333–341. [Google Scholar]
  • Carman P.C. (1937) Fluid flow through granular beds, Chem. Eng. Res. Des. 75, S32–S48. [Google Scholar]
  • Carman P.C. (1956) Flow of gases through porous media, Academic Press, New York. [Google Scholar]
  • Kozeny J. (1927) Über kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss., Wien 136, 2a, 271–306. [Google Scholar]
  • Doyen P.M. (1988) Permeability, conductivity, and pore geometry of sandstone, J. Geophys. Res. 93, B7, 7729. [CrossRef] [Google Scholar]
  • Yang Y., Aplin A.C. (2010) A permeability-porosity relationship for mudstones, Mar. Pet. Geol. 27, 8, 1692–1697. [CrossRef] [Google Scholar]
  • Guy N., Colombo D., Frey J., Cornu T., Cacas-Stentz M.C. (2019) Coupled modeling of sedimentary basin and geomechanics: a modified Drucker–Prager cap model to describe rock compaction in tectonic context, Rock Mech. Rock Eng. 52, 10, 3627–3643. [CrossRef] [Google Scholar]
  • Beall A., Fisher A. (1969) Sedimentology. Initial Reports Deep Sea Drilling Project, vol. 1, pp. 521–593. [Google Scholar]
  • Dunnington H.V. (1967) Aspects of diagenesis and shape change in stylolitic limestone reservoirs, in: 7th World Petroleum Congress (WPC). [Google Scholar]
  • Bloch S., McGowen J.H., Brizzolara D.W. (1990) Porosity prediction, prior to drilling, in sandstones of the Kekiktuk formation (Mississippian), North slope of Alaska, AAPG Bull. 74, 9, 1371–1385. [Google Scholar]
  • Faille I., Thibaut M., Cacas M.C., Havé P., Willien F., Wolf S., Agelas L., Pegaz-Fiornet S. (2014) Modeling fluid flow in faulted basins, Oil Gas Sci. Technol. 69, 4, 529–553. [CrossRef] [Google Scholar]
  • Fuchtbauer H. (1967) Influence of different types of diagenesis on sandstone porosity, in: 7th World Petroleum Congress (WPC). [Google Scholar]
  • Schmidt V., McDonald D.A. (1979) The role of secondary porosity in the course of sandstone diagenesis, SEPM Society for Sedimentary Geology. [CrossRef] [Google Scholar]
  • Dasgupta T., Mukherjee S. (2020) Compaction of sediments and different compaction models, Springer International Publishing, pp. 1–8. [Google Scholar]
  • Giles M.R., Indrelid S.L., James D.M.D. (1998) Compaction—the great unknown in basin modelling, Geol. Soc. Spec. Publ. 141, 1, 15–43. [CrossRef] [Google Scholar]
  • Marín-Moreno H., Minshull T.A., Edwards R.A. (2013) A disequilibrium compaction model constrained by seismic data and application to overpressure generation in the Eastern Black Sea basin, Basin Res. 25, 3, 331–347. [CrossRef] [Google Scholar]
  • Okiongbo K.S. (2011) Effective stress-porosity relationship above and within the oil window in the north sea basin, Res. J. Appl. Sci. Eng. Technol. 3, 1, 32–38. [Google Scholar]
  • Doligez B. (1987) Migration of hydrocarbons in sedimentary basins, in: 2nd IFP Exploration Research Conference. [Google Scholar]
  • Schneider F., Wolf S., Faille I., Pot D. (2000) A 3d basin model for hydrocarbon potential evaluation: application to Congo offshore, Oil Gas Sci. Technol. 55, 1, 3–13. [CrossRef] [Google Scholar]
  • Ungerer P., Burrus J., Doligez B., Chenet P.Y., Bessis F. (1990) Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration, AAPG Bull. 74, 3,309–335. [Google Scholar]
  • Luo X., Vasseur G., Pouya A., Lamoureux-Var V., Poliakov A. (1998) Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale, Mar. Pet. Geol. 15, 2, 145–162. [CrossRef] [Google Scholar]
  • Obradors-Prats J., Rouainia M., Aplin A.C., Crook A.J.L. (2017) Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach, Mar. Pet. Geol. 79, 31–43. [CrossRef] [Google Scholar]
  • Schneider F. (1993) Modèle de compaction élasto-plastique en simulation de bassins, Oil Gas Sci. Technol. 48, 1, 3–14. [Google Scholar]
  • Schneider F., Potdevin J.L., Wolf S., Faille I. (1994) Modèle de compaction élastoplastique et viscoplastique pour simulation de bassins sédimentaires, Oil Gas Sci. Technol. 49, 2, 1–8. [Google Scholar]
  • DiMaggio F.L., Sandler I.S. (1971) The effect of strain rate on the constitutive equation of rocks, 2801T, Defense Nuclear Agency. [Google Scholar]
  • Berthelon J., Brüch A., Colombo D., Frey J., Traby R., Bouziat A., Cacas-Stentz M.C., Cornu T. (2021) Impact of tectonic shortening on fluid overpressure in petroleum system modelling: insights from the Neuquén basin, argentina, Mar. Pet. Geol. 127, 104933. [CrossRef] [Google Scholar]
  • Brüch A., Colombo D., Frey J., Berthelon J., Cacas-Stentz M.-C., Cornu T. (2020) Poro-elastoplastic constitutive law for coupling 3d geomechanics to classical petroleum system modeling, in: 54th U.S. Rock Mechanics/Geomechanics Symposium. [Google Scholar]
  • Brüch A., Colombo D., Frey J., Berthelon J., Cacas-Stentz M.C., Cornu T., Gout C. (2021) Coupling 3d geomechanics to classical sedimentary basin modeling: From gravitational compaction to tectonics, Geomech. Energy Environ. 28, 100259. [CrossRef] [Google Scholar]
  • EDF R&D (2017) Code Aster. [Google Scholar]
  • Guy N., Enchéry G., Renard G. (2012) Numerical modeling of thermal EOR: Comprehensive coupling of an AMR-based model of thermal fluid flow and geomechanics, Oil Gas Sci. Technol. 67, 6, 1019–1027. [CrossRef] [Google Scholar]
  • Bouziat A., Guy N., Frey J., Colombo D., Colin P., Cacas-Stentz M.-C., Cornu T. (2019) An assessment of stress states in passive margin sediments: Iterative hydro-mechanical simulations on basin models and implications for rock failure predictions, Geosci. J. 9, 11, 469. [CrossRef] [Google Scholar]
  • Lyakhovsky V., Shalev E., Panteleev I., Mubassarova V. (2020) Directional compaction, Earth Space Sci. [Google Scholar]
  • Brüch A., Maghous S., Ribeiro F.L.B., Dormieux L. (2018) A thermo-poromechanical constitutive and numerical model for deformation in sedimentary basins, J. Pet. Sci. Eng. 160, 313–326. [CrossRef] [Google Scholar]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155–164. [Google Scholar]
  • Biot M.A., Willis D.G. (1957) The elastic coefficients of the theory of consolidation, J. Appl. Mech. 24, 4, 594–601. [CrossRef] [MathSciNet] [Google Scholar]
  • Coussy O. (2004) Poromechanics, Wiley. [Google Scholar]
  • Terzaghi K. (1923) Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hidrodynamichen Spannungserscheinungen, Sitzungsberichte der Akademie der Wissenschaften in Wien 132, 125–138. [Google Scholar]
  • Boutéca M., Sarda J.-P., Laurent J. (1991) Rock mechanics contribution to the determination of fluid flow properties, in: Second European Core Analysis Symposium (Eurocas II). [Google Scholar]
  • Maghous S., Brüch A., Bernaud D., Dormieux L., Braun A.L. (2014) Two-dimensional finite element analysis of gravitational and lateral-driven deformation in sedimentary basins, Int. J. Numer. Anal. Methods Geomech. 38, 7, 725–746. [CrossRef] [Google Scholar]
  • Schneider F., Potdevin J.L., Wolf S., Faille I. (1996) Mechanical and chemical compaction model for sedimentary basin simulators, Tectonophysics 263, 1–4, 307–317. [CrossRef] [Google Scholar]
  • Schneider F., Hay S. (2001) Compaction model for quartzose sandstones – application to the Garn Formation, Haltenbanken, Mid-Norwegian continental shelf – part I – theory, European Association of Geoscientists & Engineers. [Google Scholar]
  • Athy L.F. (1930) Density, porosity, and compaction of sedimentary rocks, AAPG Bull. 14, 1, 1–24. [Google Scholar]
  • Gutierrez M., Wangen M. (2005) Modeling of compaction and overpressuring in sedimentary basins, Mar. Pet. Geol. 22, 3, 351–363. [CrossRef] [Google Scholar]
  • Fowler A.C., Yang X.-S. (1998) Fast and slow compaction in sedimentary basins, SIAM J. Appl. Math 59, 1, 365–385. [Google Scholar]
  • Zienkiewicz O.C., Taylor R.L., Zhu J.Z. (2005) The finite element method: its basis and fundamentals, Elsevier Butterworth-Heinemann. [Google Scholar]
  • Dormieux L., Maghous S. (1999) Poroelasticity and poroplasticity at large strains, Oil Gas Sci. Technol. 54, 6, 773–784. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.