Issue
Sci. Tech. Energ. Transition
Volume 77, 2022
Selected Papers from 7th International Symposium on Hydrogen Energy, Renewable Energy and Materials (HEREM), 2021
Article Number 9
Number of page(s) 13
DOI https://doi.org/10.2516/stet/2022007
Published online 24 May 2022
  • Ahmad T., Zhang D. (2020) A critical review of comparative global historical energy consumption and future demand: The story told so far, Energy Rep. 6, 1973–1991. [CrossRef] [Google Scholar]
  • Ahmed Z., Asghar M.M., Malik M.N., Nawaz K. (2020) Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China, Resour. Policy 67, 101677. [CrossRef] [Google Scholar]
  • Alvarado R., Ponce P., Criollo A., Córdova K., Khan M.K. (2018) Environmental degradation and real per capita output: new evidence at the global level grouping countries by income levels, J. Clean. Prod. 189, 13–20. [CrossRef] [Google Scholar]
  • Bai Y., Chou L., Zhang W. (2021) Industrial innovation characteristics and spatial differentiation of smart grid technology in China based on patent mining, J. Energy Storage 43, 103289. [CrossRef] [Google Scholar]
  • Cao Y., Wu Y., Fang Z., Cui X., Liang J., Song X. (2019) Spatiotemporal patterns and morphological characteristics of Ulva prolifera distribution in the Yellow Sea, China in 2016–2018, Remote Sens. 11, 4, 445. [CrossRef] [Google Scholar]
  • Chen Y., Tang X.H. (2018) Spillover effects of manufacturing agglomeration on urban green total factor productivity: From the perspective of city level, Finance Trade Res. 29, 1, 1–15. [Google Scholar]
  • Chishti M.Z., Ahmad M., Rehman A., Khan M.K. (2021) Mitigations pathways towards sustainable development: Assessing the influence of fiscal and monetary policies on carbon emissions in BRICS economies, J. Clean. Prod. 292, 126035. [CrossRef] [Google Scholar]
  • Dagher L. (2012) Natural gas demand at the utility level: An application of dynamic elasticities, Energy Econ. 34, 4, 961–969. [CrossRef] [Google Scholar]
  • Ding X., Zheng M., Zheng X. (2021) The application of genetic algorithm in land use optimization research: A review, Land 10, 5, 526. [CrossRef] [Google Scholar]
  • Elgammal A., Duraiswami R., Harwood D., Davis L.S. (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance, Proc. IEEE 90, 7, 1151–1163. [CrossRef] [Google Scholar]
  • Field C.B., Barros V.R. (eds) (2014) Climate change 2014 – Impacts, adaptation and vulnerability: Regional aspects, Cambridge University Press, Cambridge, UK. [CrossRef] [Google Scholar]
  • Fortin M.J., Dale M.R. (2009) Spatial autocorrelation, in: The SAGE handbook of spatial analysis, SAGE Publications, Los Angeles; London, pp. 89–103. [CrossRef] [Google Scholar]
  • Gregg J.S., Losey L.M., Andres R.J., Blasing T.J., Marland G. (2009) The temporal and spatial distribution of carbon dioxide emissions from fossil-fuel use in North America, J. Appl. Meteorol. Climatol. 48, 12, 2528–2542. [CrossRef] [Google Scholar]
  • Haseeb M., Abidin I.S.Z., Hye Q.M.A., Hartani N.H. (2019) The impact of renewable energy on economic well-being of Malaysia: Fresh evidence from auto regressive distributed lag bound testing approach, Int. J. Energy Econ. Policy 9, 1, 269. [Google Scholar]
  • Jiang P., Yang H., Ma X. (2019) Coal production and consumption analysis, and forecasting of related carbon emission: Evidence from China, Carbon Manag. 10, 2, 189–208. [CrossRef] [Google Scholar]
  • Kauth R.J., Thomas G.S. (1976, January) The tasselled cap – a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat, in: Proceedings, Symposium on Machine Processing of Remotely Sensed Data, LARS symposia, 29 June-1 July 1976, Purdue University, West Lafayette, IN, 159 p. [Google Scholar]
  • Khan M.A. (2015) Modelling and forecasting the demand for natural gas in Pakistan, Renew. Sustain. Energy Rev. 49, 1145–1159. [CrossRef] [Google Scholar]
  • Khan M.K., Teng J.Z., Khan M.I. (2019) Effect of energy consumption and economic growth on carbon dioxide emissions in Pakistan with dynamic ARDL simulations approach, Environ. Sci. Pollut. Res. 26, 23, 23480–23490. [CrossRef] [PubMed] [Google Scholar]
  • Khan M.K., Khan M.I., Rehan M. (2020) The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan, Financ. Innov. 6, 1, 1–13. [CrossRef] [Google Scholar]
  • Khan S., Khan M.K., Muhammad B. (2021) Impact of financial development and energy consumption on environmental degradation in 184 countries using a dynamic panel model, Environ. Sci. Pollut. Res. 28, 8, 9542–9557. [CrossRef] [PubMed] [Google Scholar]
  • Kockel C., Nolting L., Priesmann J., Praktiknjo A. (2022) Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case, Appl. Energy 308, 118226. [CrossRef] [Google Scholar]
  • Li D., Lu D., Zhao Y., Zhou M., Chen G. (2021) Spatial patterns of vegetation coverage change in giant panda habitat based on MODIS time-series observations and Local Indicators of Spatial Association, Ecol. Indic. 124, 107418. [CrossRef] [Google Scholar]
  • Liu R., Wang D., Zhang L., Zhang L. (2019) Can green financial development promote regional ecological efficiency? A case study of China, Nat. Hazards 95, 1, 325–341. [CrossRef] [Google Scholar]
  • Mesfun S., Leduc S., Patrizio P., Wetterlund E., Mendoza-Ponce A., Lammens T., Staritsky I., Elbersen B., Lundgren J., Kraxner F. (2018) Spatio-temporal assessment of integrating intermittent electricity in the EU and Western Balkans power sector under ambitious CO2 emission policies, Energy 164, 676–693. [CrossRef] [Google Scholar]
  • Muhammad B., Khan M.K., Khan M.I., Khan S. (2021) Impact of foreign direct investment, natural resources, renewable energy consumption, and economic growth on environmental degradation: evidence from BRICS, developing, developed and global countries, Environ. Sci. Pollut. Res. 28, 17, 21789–21798. [CrossRef] [PubMed] [Google Scholar]
  • Ning J., Liu J., Kuang W., Xu X., Zhang S., Yan C., Li R., Wu S., Hu Y., Du G., Chi W., Pan T., Ning J. (2018) Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015, J. Geogr. Sci. 28, 5, 547–562. [CrossRef] [Google Scholar]
  • Rahman Z.U., Khattak S.I., Ahmad M., Khan A. (2020) A disaggregated-level analysis of the relationship among energy production, energy consumption and economic growth: Evidence from China, Energy 194, 116836. [CrossRef] [Google Scholar]
  • Rodríguez-Pose A., Griffiths J. (2021) Developing intermediate cities, Reg. Sci. Policy Pract. 13, 3, 441–456. [CrossRef] [Google Scholar]
  • Schulz N.B. (2010) Delving into the carbon footprints of Singapore – comparing direct and indirect greenhouse gas emissions of a small and open economic system, Energy Policy 38, 9, 4848–4855. [CrossRef] [Google Scholar]
  • Shahbaz M., Nasir M.A., Roubaud D. (2018) Environmental degradation in France: The effects of FDI, financial development, and energy innovations, Energy Econ. 74, 843–857. [CrossRef] [Google Scholar]
  • Tao S., Ru M.Y., Du W., Zhu X., Zhong Q.R., Li B.G., Shen G.F., Pan X.L., Meng W.J., Chen Y.L., Shen H.Z., Lin N., Su S., Zhuo S.J., Huang T.B., Xu Y., Yun X., Liu J.F., Wang X.L., Liu W.X., Cheng H.F., Zhu D.Q. (2018) Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey, Nat. Energy 3, 7, 567–573. [CrossRef] [Google Scholar]
  • Teng J.Z., Khan M.K., Khan M.I., Chishti M.Z., Khan M.O. (2021) Effect of foreign direct investment on CO2 emission with the role of globalization, institutional quality with pooled mean group panel ARDL, Environ. Sci. Pollut. Res. 28, 5, 5271–5282. [CrossRef] [PubMed] [Google Scholar]
  • Winzer C. (2012) Conceptualizing energy security, Energy Policy 46, 36–48. [CrossRef] [Google Scholar]
  • Wu H., Hao Y., Ren S. (2020) How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China, Energy Econ. 91, 104880. [CrossRef] [Google Scholar]
  • Yan D., Lei Y., Li L., Song W. (2017) Carbon emission efficiency and spatial clustering analyses in China’s thermal power industry: Evidence from the provincial level, J. Clean. Prod. 156, 518–527. [CrossRef] [Google Scholar]
  • Ye W., Zhe Z., Chunliang X. (2011) Social space structure of coal city in transition: A case study of Fuxin city China, Sci. Geogr. Sin. 31, 7, 850–857. [Google Scholar]
  • Zhang L., Godil D.I., Bibi M., Khan M.K., Sarwat S., Anser M.K. (2021) Caring for the environment: How human capital, natural resources, and economic growth interact with environmental degradation in Pakistan? A dynamic ARDL approach, Sci. Total Environ. 774, 145553. [CrossRef] [Google Scholar]
  • Zhang W., Wang J., Xu Y., Wang C., Streets D.G. (2022a) Analyzing the spatio-temporal variation of the CO2 emissions from district heating systems with “Coal-to-Gas” transition: Evidence from GTWR model and satellite data in China, Sci. Total Environ. 803, 150083. [CrossRef] [Google Scholar]
  • Zhang X., Zhang B., Yao Y., Wang J., Yu F., Liu J., Li J. (2022b) Dynamics and climatic drivers of evergreen vegetation in the Qinling-Daba Mountains of China, Ecol. Indic. 136, 108625. [CrossRef] [Google Scholar]
  • Zhiguo L., Susu Q., Shuzhong J. (2017) Study on spatial and temporal differences in energy consumption behavior of Bohai economic rim, Sino-Global Energy 05, 8–13. [Google Scholar]
  • Ziakopoulos A. (2021) Spatial analysis of harsh driving behavior events in urban networks using high-resolution smartphone and geometric data, Accid. Anal. Prev. 157, 106189. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.