Sci. Tech. Energ. Transition
Volume 77, 2022
Dossier LES4ECE’21: LES for Energy Conversion in Electric and Combustion Engines, 2021
Article Number 10
Number of page(s) 14
Published online 31 May 2022
  • United States Energy Information Administration (EIA) (2021) Annual energy outlook, Energy Information Administration (EIA), USA. [Google Scholar]
  • Ikeya K., Takazawa M., Yamada T., Park S., Tagishi R. (2015) Thermal Efficiency Enhancement of a Gasoline Engine, SAE Int. J. Engines 8, 4, 1579–1586. [CrossRef] [Google Scholar]
  • Ayala F.A., Heywood J.B. (2007) Lean SI engines: The role of combustion variability in defining lean limits, in: 8th International Conference on Engines for Automobile, Capri Naples, Italy, 16–20 September. SAE Technical Paper. Consiglio Nazionale delle Ricerche. [Google Scholar]
  • Colin O., Truffin K. (2011) A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES), Proc. Combust. Inst. 33, 2, 3097–3104. [CrossRef] [Google Scholar]
  • Keum S., Zhu G., Grover R. Jr, Zeng W., Rutland C., Kuo T.-W. (2021) A semi-empirical laminar-to-turbulent flame transition model coupled with G equation for early flame kernel development and combustion in spark-ignition engines, Int. J. Engine Res. 22, 2, 479–490. [CrossRef] [Google Scholar]
  • Thiele M., Selle S., Riedel U., Warnatz J., Maas U. (2000) Numerical simulation of spark ignition including ionization, Proc. Combust. Inst. 28, 1, 1177–1185. [CrossRef] [Google Scholar]
  • Yang X., Solomon A., Kuo T.-W. (2012) Ignition and combustion simulations of spray-guided sidi engine using arrhenius combustion with spark-energy deposition model, in: SAE 2012 World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012. SAE International. [Google Scholar]
  • Givler S.D., Raju M., Pomraning E., Senecal P.K., Salman N., Reese R. (2013) Gasoline combustion modeling of direct and port-fuel injected engines using a reduced chemical mechanism, in: SAE 2013 World Congress & Exhibition, April 16–18, 2013, Detroit, MI, USA. SAE Technical Paper 2013-01-1098. SAE International. [Google Scholar]
  • Tan Z., Reitz R.D. (2006) An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling, Combust. Flame 145, 1, 1–15. [CrossRef] [Google Scholar]
  • Duclos J.-M., Colin O. (2001) (2-25) Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition engine calculations((SI-7)S. I. Engine Combustion 7-Modeling), in: The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 2001), Nagoya, Japan, July 1–4, 2001, 46 p. [CrossRef] [Google Scholar]
  • Dahms R.N., Drake M.C., Fansler T.D., Kuo T.-W., Peters N. (2011) Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation, Combust. Flame 158, 11, 2229–2244. [CrossRef] [Google Scholar]
  • Lacaze G., Richardson E., Poinsot T. (2009) Large eddy simulation of spark ignition in a turbulent methane jet, Combust. Flame 156, 10, 1993–2009. [CrossRef] [Google Scholar]
  • Colin O., Ritter M., Lacour C., Truffin K., Mouriaux S., Stepanyan S., Lecordier B., Vervisch P. (2019) DNS and LES of spark ignition with an automotive coil, Proc. Combust. Inst. 37, 4, 4875–4883. [CrossRef] [Google Scholar]
  • Kazmouz S.J., Scarcelli R., Kim J., Cheng Z., Liu S., Dai M., Pomraning E., Senecal P.K., Lee S.-Y. (2021) High-fidelity energy deposition ignition model coupled with flame propagation models at engine-like flow conditions, in: The Internal Combustion Engine Fall Conference. Virtual Conference Online: October 13–15, 2021. [Google Scholar]
  • Dahms R., Fansler T.D., Drake M.C., Kuo T.-W., Lippert A.M., Peters N. (2009) Modeling ignition phenomena in spray-guided spark-ignited engines, Proc. Combust. Inst. 32, 2, 2743–2750. [CrossRef] [Google Scholar]
  • Fan L., Li G., Han Z., Reitz R.D. (1999) Modeling fuel preparation and stratified combustion in a gasoline direct injection engine, in: 1999 SAE International Congress and Exposition, Detroit, MI, USA, March 1–4, 1999. SAE International. [Google Scholar]
  • Sayama S., Kinoshita M., Mandokoro Y., Masuda R., Fuyuto T. (2018) Quantitative optical analysis and modelling of short circuits and blow-outs of spark channels under high-velocity flow conditions, in: International Powertrains, Fuels & Lubricants Meeting. SAE Technical Paper 2018-01-1728. SAE International. [Google Scholar]
  • Masuda R., Fuyuto T., Nagaoka M., Sugiura A., Noguchi Y. (2018) Application of models of short circuits and blow-outs of spark channels under high-velocity flow conditions to spark ignition simulation, in: International Powertrains, Fuels & Lubricants Meeting. SAE Technical Paper 2018-01-1727. SAE International. [Google Scholar]
  • Ge H., Zhao P. (2018) A comprehensive ignition system model for spark ignition engines, in: ICEF 2018 – The Internal Combustion Engine Fall Conference, San Diego, CA, USA, November 4–7, 2018. [Google Scholar]
  • Zhang A., Scarcelli R., Lee S.-Y., Wallner T., Naber J. (2016) Numerical investigation of spark ignition events in lean and dilute methane/air mixtures using a detailed energy deposition model, Argonne National Laboratory (ANL), Argonne, IL, USA. SAE Technical Paper. SAE International. [Google Scholar]
  • Scarcelli R., Zhang A., Wallner T., Som S., Huang J., Wijeyakulasuriya S., Mao Y., Zhu X., Lee S.-Y. (2019) Development of a hybrid Lagrangian-Eulerian model to describe spark-ignition processes at engine-like turbulent flow conditions, J. Eng. Gas Turb. Power 141, 9, 091009. [CrossRef] [Google Scholar]
  • Richards K.J., Senecal P.K., Pomraning E. (2021) Converge 3.0, Convergent Science, Madison, WI. [Google Scholar]
  • Kazmouz S.J., Scarcelli R., Bresler M., Blash E., Su X., Hardman K. (2021) Modeling spark channel elongation at different flow magnitudes and pressure conditions, in: 12th U.S. National Combustion Meeting, May 24–26, 2021, Texas A&M University, College Station. TX, USA (Virtual). [Google Scholar]
  • Zeng W., Sjӧberg M., Reuss D. (2014) Using PIV measurements to determine the role of the in-cylinder flow field for stratified DISI engine combustion, SAE Int. J. Engines 7, 2, 615–632. [CrossRef] [Google Scholar]
  • Charlette F., Meneveau C., Veynante D. (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests, Combust Flame 131, 1, 159–180. [CrossRef] [Google Scholar]
  • Zembi J., Battistoni M., Nambully S.K., Pandal A., Mehl C., Colin O. (2021) LES investigation of cycle-to-cycle variation in a SI optical access engine using TFM-AMR combustion model, Int. J. Engine Res. 23, 6, 1027–1046. [Google Scholar]
  • Pitsch H., Duchamp de Lageneste L. (2002) Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proc. Combust. Inst. 29, 2, 2001–2008. [CrossRef] [Google Scholar]
  • Xu C., Pal P., Ren X., Sjӧberg M., Van Dam N., Wu Y., Lu T., McNenly M., Som S. (2020) Numerical investigation of fuel property effects on mixed-mode combustion in a spark-ignition engine, J. Energy Resour. Technol. 143, 4, 042306. [Google Scholar]
  • Dam N.V., Sjӧberg M., Som S. (2018) Large-eddy simulations of spray variability effects on flow variability in a direct-injection spark-ignition engine under non-combusting operating conditions, in: WCX World Congress Experience, Detroit MI, USA, April 10–12, 2018. SAE Technical Paper 2018-01-0196, SAE International. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.